Вторжение космических тел в атмосферу Земли

30662
знака
0
таблиц
6
изображений

1.Метеоритное вещество и метеориты.

Каменные и железные тела, упавшие на Землю из межпланетного пространства, называются метеоритами, а наука, их изучающая-метеоритикой. В околоземном космическом пространстве движутся самые различные метеороиды (космические осколки больших астероидов и комет). Их скорости лежат в диапазоне от 11 до 72 км/с. Часто бывает так, что пути их движения пересекаются с орбитой Земли и они залетают в её атмосферу.

Явления вторжения космических тел в атмосферу имеют три основные стадии:

1. Полёт в разреженной атмосфере (до высот около 80 км), где взаимодействие молекул воздуха носит карпускулярный характер. Частицы воздуха соударяются с телом, прилипают к нему или отражаются и передают ему часть своей энергии. Тело нагревается от непрерывной бомбардировки молекулами воздуха, но не испытывает заметного сопротивления, и его скорость остаётся почти неизменной. На этой стадии, однако, внешняя часть космического тела нагревается до тысячи градусов и выше. Здесь характерным параметром задачи является отношение длины свободного пробега к размеру тела L, которое называется числом Кнудсена Kn. В аэродинамике принято учитывать молекулярный подход к сопротивлению воздуха при Kn>0.1.

2. Полёт в атмосфере в режиме непрерывного обтекания тела потоком воздуха, то есть когда воздух считается сплошной средой и атомно-молекулярный характер его состава явно не учитывается. На этой стадии перед телом возникает головная ударная волна, за которой резко повышается давление и температура. Само тело нагревается за счет конвективной теплопередачи, а так же за счет радиационного нагрева. Температура может достигать несколько десятков тысяч градусов, а давление до сотен атмосфер. При резком торможении появляются значительные перегрузки. Возникают деформации тел, оплавление и испарение их поверхностей, унос массы набегающим воздушным потоком (абляция).

3. При приближении к поверхности Земли плотность воздуха растёт, сопротивление тела увеличивается, и оно либо практически останавливается на какой-либо высоте, либо продолжает путь до прямого столкновения с Землёй. При этом часто крупные тела разделяются на несколько частей, каждая из которых падает отдельно на Землю. При сильном торможении космической массы над Землёй сопровождающие его ударные волны продолжают своё движение к поверхности Земли, отражаются от неё и производят возмущения нижних слоёв атмосферы, а так же земной поверхности.

Процесс падения каждого метеороида индивидуален. Нет возможности в кратком рассказе описать все возможные особенности этого процесса. Мы остановимся здесь на двух моделях входа:

твёрдых метеоритных тел типа железных либо прочных каменных

легко деформируемых типа рыхлых метеоритных масс и фрагментов голов комет на примере Тунгусского космического тела.

2. Движение твердого метеороида в атмосфере.

Как уже говорилось выше, всю область полета метеороида можно разбить на две зоны. Первая зона будет соответствовать большим числам Кнудсена Kn ³ 0.1 ,а вторая зона - малым числам Кнудсена Kn < 0.1. Эффектами вращения тела принебрегаем, форму его будем считать сферической с радиусом r. Будем предполагать тело однородным.

Сначала построим модель для первой зоны. В этой зоне изменением массы метеороида можно приберечь, так как абляции и разрушения тела практически нет. Уравнения движения следуют из законов ньютоновской механники:

(4.1)

Вторжение космических тел в атмосферу Земли

(4.2)

Вторжение космических тел в атмосферу Земли

(4.3)

(4.4)

Вторжение космических тел в атмосферу Земли

Здесь

m - масса метеороида,

v - скорость,

Q - угол наклона вектора скорости к поверхности Земли,

g - ускорение силы тяжести,

r - плотность атмосферы в точке,

A=pre2 -площадь поперечного сечения метеороида (площадь миделя),

z - высота, отсчитываемая от уровня моря,

t - время ,

CD - коэффициент сопротивления воздуха ,

R3 - радиус Земли.

Изменение плотности воздух с высотой будем находить по барометрической формуле:

Вторжение космических тел в атмосферу Земли

гдеr -плотность на уровне моря. Коэффициент CD можно считать зависящим от числа Кнудсена, причём он убывает с высотой и меняется в пределах 2>CD>0.92 при изменении Kn от 10 до 0.1.

Систему (4.1)-(4.3) нужно решать в предположении, что начальный момент времени при t=0 заданы ze=z, Qe=Q, ve=v, me=m, то есть параметры входа метероида. За координату z, можно принять ту высоту, где согласно (4.1) сила тяготения Земли выравнивается с сопротивлением, то есть когда уравнение (4.5) при заданных m=me, v=ve, можно считать за определение. Пренебрежём также изменением угла, то есть примем Qe=Q (это не внесёт погрешностей, ибо Вторжение космических тел в атмосферу Земли есть малая величина для диапазона скоростей от 11 до < 70 км/с

(Вторжение космических тел в атмосферу Земли< 0.001 c-1).

После интегрирования уравнения (4.1) при условии пренебрежения силой mg sinQ и для z<ze получаем

(4.6)

Вторжение космических тел в атмосферу Земли 

где B - баллистический коэффициент. Вторжение космических тел в атмосферу Земли

Приближённую формулу (4.6) можно использовать для оценки поведения решения при больших v. Видно, что v»ve при z>>H. Это означает, что скорость тела практически не меняется.

Используя несложную компьютерную технику, систему (4.1)-(4.3) можно проинтегрировать с помощью любого подходящего численного метода, например метода Эйдлера с пересчётом. Сущность этого метода состоит в том, что для уравнения y’=f(x,y) сначала мы находим значение `y’1=f(x0,y0) Dx+y0 где x0, y0 -начальная точка, а Dx - шаг интегрирования, затем берём

Вторжение космических тел в атмосферу Земли

и находим уточнённое значение y1=y’Dx+y0+O(Dx2)Вторжение космических тел в атмосферу Земли

Аналогичная процедура используется в случае системы уравнений.

Этот метод весьма прост для реализации даже с помощью программируемых микрокалькуляторов (вследствие простоты правых частей системы (4.1)-(4.3)).

Для расчёта движения метеорита в нижних слоях атмосферы система (4.1)-(4.4)не годится ,т.к. она не учитывает абляцию (изменение массы),поэтому перейдем к описанию более сложной модели ,пригодной для низких высот ,т.е. для второй зоны.

Систему уравнений так называемой физической теории метеоритов (Kn<0.1) запишем в предположении движения тела в плоскости, проходящей через ось z:

(4.8)

(4.7)

(4.9)

(4.10)

Вторжение космических тел в атмосферу Земли

Здесь

f - коэффициент реактивной отдачи, -1<f<1;

CL - коэффициент подъёмной силы,

i* - эффективная энтальпия разрушения

(характерная теплота сублимации или парообразования),

CH=CH(r,v,r) - коэффициент теплопередачи;

остальные обозначения такие же, как и в системе (4.1)-(4.3). Реактивной силой в уравнении (4.7) можно принебречь, если i*>1000 кал/г. Площадь А в общем случае - величина переменная, ибо масса тела меняется, причём для для случая шара:

Вторжение космических тел в атмосферу Земли

Уравнению (4.10) можно придать следующий физический смысл: изменение массы,- Dm, за время пропорциональное кинетической энергии газа в объеме ,”охваченном” за это время миделем вдоль траектории (DtvA), и обратно пропорциональное энергии разрушения, то есть

Вторжение космических тел в атмосферу Земли

Приведём теперь численные значения констант. Для высоты H=7.16 км; r0=1.29*10-3 г/см; g=9.8 м/с; R3=6371.7 км. Коэффициенты CD и CH зависят от v,r,r и находятся специальными расчётами, однако коэффициент CD можно приближённо считать равным 0.9; CH как функция v,r,r приводится в руководствах по метеоритике и аэродинамике. Коэффициент теплообмена обычно состоит из двух частей:

-конвективного теплообмена.

-радиационного.

 Для крупных тел главную роль будет играть радиационный теплообмен. Для тел размером около 0.5 м при скорости входа ve=20 км/с и массе me=200 кг оценки показывают, что

0.01<CH<0.1; v>1 км/c

Коэффициент подъёмной силы CL, как правило, мал, и его обычно не учитывают в приближённых теориях, т.к. силы, действующие поперёк траектории ,малы. Эти силы могут возникать из-за неоднородности среды, реактивного эффекта, сильного ветра, угла наклона тела к направлению движения (угла атаки). На рис. 1 дан график изменения скорости движения тела в зависимости от высоты для фрагмента каменно-железного метеорита Лост-Сити, полёт которого был зафиксирован оптической камерой сети наблюдений. Найденная часть метеорита имела массу 15 кг, его скорость входа была ve=14.2 км/с, плотность rm=3.6 г/см3, i*=1300 кал/г, qe=43° (рис.1). Кружки на графике соответствуют данным наблюлений до скорости 3 км/с, когда метеорит перестал светиться. Потеря массы составила около 3 кг. Видно, что представленная модель для такого случая вполне удовлетворительна. Здесь же на рис.1 дана зависимость z(v) для случая ve=14.2 км/с, me=490 кг, rm=3.6 г/см3, i*=500 кал/г, qe=43° (штриховая линия). Видно, что траектории отличаются не так уж сильно, хотя абляция должна должна быть весьма интенсивной. Здесь могут быть и такие случаи случаи, когда практически вся масса метеороида испарится и снесётся в спутныйё поток, то есть (Dm/me)»1.

Американский астрофизик Д.О.Ре-Вилл выполнил расчёты для системы (4.7)-(4.10) при CL=0, ve=30 км/с, qe=45°, rm=3.7 г/см3, i*=2000 кал/г, me=10000 кг. Оказалось, что Dm»me на высотах, где v=3.5 км/с.

Таким образом, практически всё вещество распылилось в виде пара и мелких частичек в следе метеороида. Космическое тело “сгорело” до касания поверхности Земли. Здесь механизм испарения обусловлен сильными лучистыми потоками к поверхности воздуха, прошедшего через баллистическую волну при высоких скоростях до (до 5 км/с.)

Различные исследователи проводили опыты по деформации и разрушению водяных капель в потоках воздуха. По Дж. Ханту (Англия), при временах порядка tb происхрдит струйное “пробивание” в центре эллипсоидального тела и образование объёма в форме тора, который уже потом разрушается на более мелкие капли. Расчёты показали существенную роль процессов абляции и изменения формы при взаимодействии метеорита с атмосферой.

Вторжение космических тел в атмосферу Земли

 Так как влетающий в атмосферу метеороид холодный (температура его внутренних частей ниже температуры окружающей Среды), то можно считать, что энергия состоит только из кинетической. Углерод метеорита может гореть в атмосфере при сответствующих условиях. Но недостаток кислорода не позволит сгореть большому количеству углерода, и выделившаяся энергия не будет превышать кинетической энергии тела. Как же расходуется кинетическая энергия тела. Пусть тело затормозилось от скорости ve до скорости vc на пути. Это означает, что на этом пути энергия передалась окружающей среде за время tc. Время tc около 1-10 с, S порядка 80-40 км. Отсюда получаем, что с точки зрения воздействия на атмосферу метеориты подобны молнии: за малое время вдоль траектории выделяется энергия DE, на единицу длины приходится DE/S. Рассмотрим пример. Для метеорита типа Лост-Сити me=18 кг, mc=15 кг, ve=14 км/с, vc=3 км/с

DE»meve2/2

 s=50 км, E0=DE/S=360 дж/см. метеороид подобен весьма длинной молнии с удельной энергией E0= meve2/2S. Для “сгорающих” метеороидов есть и внешнее сходство: они сверкают в небесной выси, как молнии. Очевидцы, наблюдавшие падение метеороидов, слышали и раскаты грома; баллистическая волна распространялась в атмосфере, подобно грозовой ударной волне.

Сформулированная выше упрощённая модель движения метеороида, объединённая с теорией линейных взрывов (грозовых разрядов), даёт возможность создать модель движения и взаимодействия метеороидов с атмосферой.

В заключении этого раздела коснёмся вопроса о характере и многообразии траекторий метеороидов. Не будем учитывать изменения массы, т.е. положим dm/dt=0, но CL¹0; отношение (CL/CD)=k называется аэродинамическим качеством движущегося тела.

Будем считать, что |k|£1, причём отрицательные значения k соответствуют наличию поперечной силы, действующей на тело “вниз” - в отрицательном направлении оси y местной системы координат, где ось x направлена вдоль вектора скорости, а ось y к ней перпендекулярна. Характерную величину m/CDA обозначим через b. За величину b примем значение 1515 кг/м2, что будет соответствовать входу в атмосферу сферического тела радиуса rE=97.8 м и плотностью rm=0.03 г/см. Обозначим через S расстояние вдоль поверхности Земли от проекции условной точки входа в атмосферу на эту поверхность. Пусть угол входа равен 20°, ZE=60км, vE=30 км/с. Меняя значения k, мы получим разные траектории и скорости тела при значениях аэродинамического качества k=0.5;-0.125;0;0.125;0.5 (S -расстояние от поверхности Земли) (рис. 2). При k=0.5 наблюдается явление рикошета .

При значениях k<0 траектории могут иметь вертикальную касательную, а при k<-1 пролётную g-образную траекторию.

Из рис. 2 видно, что скорость тела остаётся практически постоянной до высоты 40 км.

Кроме описанных выше параметров вычисляется интенсивность свечения I по формуле

(4.11)

Вторжение космических тел в атмосферу Земли

где t0 - коэффициент эффективности свечения (опытный параметр).

 Опишем вкратце более общую модель входа метеороида в атмосферу. Уравнения (4.7)-(4.10) описывают движение центра масс метеороида. Кроме этого следовало бы описать движение метеороида около центра масс. Довольно трудной задачей является определение параметров тела и окружающего воздуха, включая след за телом. Для этой задачи следует на определённых этапах (для дискретного набора времени t=tj) проводить расчёт обтекания и абляции, а так же механической деструкции тел, с учётом эффекта теплопередачи и излучения, а так же высвечивание метеороидов в различных спектральных диапазонах). Нужно рассчитывать распространение атмосферных возмущений в пространстве и времени. Следует изучить вопросы, связанные с моделированием воздействия удара метеороидов и балистических волн о поверхность Земли.


Информация о работе «Вторжение космических тел в атмосферу Земли»
Раздел: Математика
Количество знаков с пробелами: 30662
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
38402
0
0

... случаев надежна и устойчива. Так, например, метеорная линия связи, работающая на волен 8 м, способна обеспечить непрерывную четкую работу нескольких телетайпов. Глава 2. Методы наблюдения метеоров Визуальные наблюдения метеоров невооруженным глазом, являющиеся самым древним и самым дешевым методом наблюдений, оставили глубокий след в истории метеорной астрономии. Их доступность и простота ...

Скачать
39123
0
0

... является изучение метеоритов, самостоятельно «прибывших» на нашу планету из глубин Солнечной системы. 4.   Кометы   Кометы являются самыми эффективными небесными телами в Солнечной системе. Кометы - это своеобразные космические айсберги, состоящие из замороженных газов, сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. ...

Скачать
18276
0
2

... в образование светящегося хвоста. Наблюдаемое при этом явление в виде “падающей звезды” называется метеором. Таким образом, метеорные явления представляют собой явления, связанные с быстрым испарением метеиритного вещества и с ионизацией и последующей рекомбинацией ионов земной атмосферы в результате вторжения метеорита в её слои с большой скоростью. Если изначальная масса тела не велика ...

Скачать
47276
0
0

... развития событий на нашей планете, подвергающейся не трудно, вспомнить о тунгусской трагедии 1908г...  «Рикошет» Оригинальную гипотезу, объясняющую некоторые обстоятельства падения Тунгусского метеорита, выдвинул ленинградский учёный, доктор технических наук, профессор Е. Иорданишвили. Известно, что вторгающееся в земную атмосферу тело, если его скорость составляет десятки ...

0 комментариев


Наверх