144. Философское значение идей В. И. Вернадского о биогеохимическом процессе.
В. И. Вернадский, изучавший взаимодействие живых и неживых систем, выдвинул принцип неразрывной связи живого и неживого, переосмыслив понятие биосферы. Он понимал биосферу как сферу единства живого и неживого. Вернадский в своих работах раскрывает корни этого единства, значение организованности биосферы в развитии человечества. Это позволяет понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу.
Одной из ключевых идей, лежащих в основе теории Вернадского о ноосфере, является то, что человек не является самодостаточным живым существом, живущим отдельно по своим законам, он сосуществует внутри природы и является частью ее. Это единство обусловлено прежде всего функциональной неразрывностью окружающей среды и человека, которую пытался показать Вернадский как биогеохимик. Человечество само по себе есть природное явление и естественно, что влияние биосферы сказывается не только на среде жизни но и на образе мысли Вернадский связал учение о биосфере с деятельностью человека не только геологической, но и вообще с многообразными проявлениями бытия личности и жизни человеческого общества: «В сущности, человек, являясь частью биосферы, только по сравнению с наблюдаемыми на ней явлениями может судить о мироздании. Он висит в тонкой пленке биосферы и лишь мыслью проникает вверх и вниз». Все мы, люди — неразрывная часть живого вещества, приобщенная к его бессмертию, необходимая часть планеты и космоса, продолжатели деятельности жизни, дети Солнца. . Вернадский рассматривал человеческую деятельность как геологический фактор, во многом определяющий дальнейшее развитие Земли. Для Вернадского человек был прежде всего носителем разума . Вернадский осуществлял прежде всего научный анализ, рассматривал и группировал отдельные объекты своеобразной структуры и химического состава. Проблема времени требовала преимущественно синтеза знаний. И, не прерывая аналитических исследований, Вернадский переходил к обобщениям. При изучении Вернадским «мертвого вещества», кристаллов и минералов, он сумел уловить цельность, но неоднородность мира (пространства). Он исходил не из общих рассуждений, а осмысливал конкретные научные данные кристаллографии. Вернадский считал, что кристалл – это особая активная среда, особая форма пространства. Другими словами: нет однородного пространства мира (всеобщего эфира), а есть множество его форм, состояний. Кристалл – одно из состояний, для которого характерна неоднородность физических свойств в разных направлениях.
145. Роль математики в развитии естествознания.
Математизация знания, являясь одной из существенных черт современной науки, заставляет все более пристально изучать характер логико-математического знания его функции в общей структуре науки. Это рассмотрение неизбежно приводит к постановке общих философских вопросов о природе математики . эта задача становится тем более актуальной , что математика является главным источником веры в вечную и точную истину , а также в сверхчувственный интеллигибельный.
Является по существу идеалистичной и концепция математики, предложенная современным позитивизмом. Отмежевываясь от попытки, предшествующего эмпиризма непосредственно свести элементы математического знания к элементам действительности и, критикуя на словах априоризм Канта за противопоставление двух родов знания, логический позитивизм выдвинул в качестве своего кредо в этом вопросе принцип дихотомии аналитического и синтетического. Этот принцип говорит о том, что все научное знание логически вырастает из непосредственно данного эмпирического базиса( фактуальное , синтетическое), математическое же знание не есть собственно знание ,а лишь его форма , словесная структура которая не зависит от фактов объективного мира (аналитическая)
146. Роль практики в развитии математики.
Практика — активная целенаправленная чувственно-предметная, материальная деятельность людей по преобразованию реальной действительности
Формы практики: а) материальное производство (труд), преобразование природы с помощью орудий труда; б) социальное действие — преобразование общественного бытия, изменение существующих социальных отношений определенными «массовыми силами» (революции, реформы, войны, преобразование тех или иных социальных структур); в) научный эксперимент — активная (в отличие от наблюдения) деятельность, в процессе которой субъект искусственно создает условия, позволяющие ему исследовать интересующие его свойства объективного мира.
Все формы практики в той или иной мере «нагружены» в концептуальном (теоретико-методологическом) и ценностном (ценностно-целевые структуры) отношениях.
1. Практика является источником познания потому, что все знания вызваны к жизни прежде всего и в конечном счете ее потребностями. В частности, математические знания возникли из необходимости измерять земельные участки, вычислять площади, объемы, исчислять время и- т. п. Однако не всегда, конечно, открытия в науке (например, периодический закон Менделеева) делаются непосредственно «по заказу» практики.
2. Практика выступает как основа познания, его движущая сила. Она пронизывает все стороны, моменты, формы, ступени познания от его начала и до его конца. Весь познавательный процесс, начиная от элементарных ощущений и кончая самыми абстрактными теориями, обусловливается — в конечном итоге — задачами и потребностями практики. Она служит основой познания и в том смысле, что обеспечивает его техническими средствами, приборами, оборудованием, и т. п., без которых оно — особенно в современной науке — не может быть успешным.
3. Практика является опосредованно целью познания, все наши знания предназначены в конце концов для того, чтобы вернуться обратно в практику и активно влиять на ее развития.
4. Практика представляет собой решающий критерий истины, т. е. позволяет отделить истинные знания от заблуждений.
Практика — явление конкретно-историческое: она изменяется, развивается, совершенствуются ее формы, функции.
147. Философское значение неевклидовой геометрии.
Рассмотрим подробнее две неевклидовы геометрии. В геометрии Лобачевского, которую на специальном языке называют гиперболической геометрией, имеется бесконечное множество параллельных. В римановой геометрии, известной как эллиптическая геометрия, параллельные отсутствуют вообще.
Две неевклидовы геометрии могут также различаться по сумме углов треугольника. Это различие важно с точки зрения эмпирических исследований структуры пространства.
Геометрия Лобачевского характеризуется тем, что в любой точке плоскости мера кривизны плоскости отрицательна и постоянна. Существует бесчисленное множество различных геометрий Лобачевского, каждая из которых характеризуется некоторым фиксированным параметром — отрицательным числом, — то есть мерой кривизны плоскости в этой геометрии.
Геометрия Лобачевского, модель которой представлена седловидной поверхностью, может быть охарактеризована следующим образом: для любого пространства Лобачевского имеется некоторое отрицательное значение, являющееся мерой кривизны в любой точке плоскости такого пространства. Геометрия Римана, представленная сферической поверхностью, может быть охарактеризована сходным путем: для любого риманова пространства имеется некоторое положительное значение, являющееся мерой кривизны для любой точки плоскости такого пространства. Оба пространства являются пространствами постоянной кривизны. Это значит, что для любого такого пространства мера кривизны в любой точке плоскости остается той же самой.
Эйнштейн использовал неевклидовы геометрии в своей общей теории относительности. В результате этого они перестали быть только объектом чистой математики и вошли в область физики, где стали использоваться для описания действительного мира.
Риман сначала построил свою геометрию постоянной положительной кривизны, она была названа римановой, чтобы отличить ее от ранее введенного пространства Лобачевского, в котором постоянная кривизна отрицательна. Позднее Риман разработал обобщенную теорию пространств с изменяющейся кривизной — пространств, которые не рассматривались аксиоматически.
В общей римановой теории может рассматриваться любое число измерений, и во всех случаях кривизна может меняться от точки к точке. Ообобщенная риманова геометрия содержит огромное многообразие пространств с изменяющейся кривизной. Среди этих пространств находится и пространство Эйнштейна, принимаемое в его общей теории относительности.
... школ придерживаются разных взглядов на цели философского анализа общества, на саму возможность такого анализа, соответствующего универсальным канонам научности. Однако, признавая неслучайным многообразие взглядов на предмет социальной философии, мы все же не можем принять его как должное, мегитимизировать его. Все дело в том, что, признав социальную философию наукой, мы вынуждаем себя искать ...
... возникла в 1837 году, с публикацией " Wissenschaftslehre " Больцано. Однако, с его точки зрения, начало собственно аналитического движения связано со вторым этапом аналитической философии, уже в XX веке — начиная с оккупации Варшавы в 1939, и в нем основную роль Саймонс отводит польской философии в период между двумя мировыми войнами, состоящей из определенной комбинации логического платонизма и ...
... характер патриархатной власти. И только в философии эпохи Просвещения принципы интеллектуальной и общественной мизогинии впервые были поставлены под сомнение. 4. “Эпоха разума”. Гендерная проблематика в философии Просвещения: парадоксы либерализации В эпоху Просвещения изменяется расстановка акцентов, основной бинарной оппозиции классической метафизики разум/тело — впервые в истории ...
... преподавателем философии или философоведом. Е.В. Косилова расширяет класс философов по призванию. В своей весьма занимательной работе на интересующую нас тему ("Философия: призвание или профессия?") она обращает внимание читателей на латентное, "подковёрное" противостояние двух "лагерей" внутри философского факультета (заметим кстати: речь идёт об институционализированной форме философии, ...
0 комментариев