1.2 Выращивание растений на водной культуре в ППС и с исключением элементов питания
Как уже упоминалось выше, вполне возможно вырастить нормальное растение на воде до полного созревания при его обеспечении лишь смесью элементов: азотом, фосфором, серой, калием, кальцием, магнием и железом. И это очевидно, ведь все эти незаменимые элементы нужны для построения организма растения. Данные элементы являются основными и в будущем играют определяющую роль в жизненном цикле растения. Если хоть один из этих элементов исключить из питания, то растение будет неполноценным, будут появляться видимые дефекты и отклонения от нормы.
Каждый из этих элементов участвует в том или ином процессе, каждый из них входит в состав молекул и структур растения. Например, азот входит в состав белков, нуклеиновых кислот, ферментов, порфиринов, коэнзимов. Если его не будет в питании растения, то оно будет плохо расти, так как азот является строительным материалом в составе белков.
Рассмотрим фосфор. Он тоже очень важный элемент, так как входит в состав белков, нуклеиновых кислот, фосфолипидов, фосфорных эфиров сахаров, нуклеотидов, принимающих участие в энергетическом обмене, витаминов и многих других соединений. При его недостатке у растения снижается скорость поглощения кислорода, изменяется активность ферментов, участвующих в дыхательном метаболизме, тормозится синтез белков и свободных нуклеотидов.
Сера является основным источником питания у растений. Этот элемент входит в состав серосодержащих белков, в такие важнейшие аминокислоты как цистеин и метионин. Одна из основных функций серы в белках и полипептидах – участие SH-групп в образовании ковалентных, водородных, меркаптидных связей, поддерживающих трехмерную структуру белка. Другая важнейшая функция серы в растительном организме – это поддержание определенного уровня окислительно-восстановительного потенциала клетки. Недостаток этого элемента снижает скорость фотосинтеза и роста растения, тормозит синтез серосодержащих аминокислот и белков, в острых случаях нарушается формирование хлоропластов и возможен их распад.
Содержание в тканях растений калия составляет 0,5 – 1,2% в расчете на сухую массу. Сосредоточен в основном в молодых, растущих тканях, характеризующихся высоким уровнем обмена веществ: меристемах, камбии, молодых листьях, побегах, почках. В клетках присутствует в основном в ионной форме и не входит в состав органических соединений. Калий служит основным противоионом для нейтрализации отрицательных зарядов неорганических и органических анионов. Именно присутствие калия в значительной степени определяет коллоидно-химичекие свойства цитоплазмы, что существенно влияет на все процессы в клетке. Калий способствует поддержанию состояния гидратации коллоидов цитоплазмы, регулируя ее водоудерживающую способность. Увеличение гидратации белков и водоудерживающая способности цитоплазмы повышает устойчивость растений к засухе и морозам. Недостаток калия снижает продуктивность фотосинтеза, прежде всего за счет уменьшения скорости оттока ассимилятов из листьев.
Большое значение в жизни растений имеет двухвалентный ион кальция. Он присутствует во всех клеточных структурах и стабилизирует их функции. Особенно важное значение имеет кальций для нормального развития и деятельности корневой системы. При недостатке этого элемента задерживается формирование и рост корней, в том числе корневых волосков. Нехватка кальция, прежде всего, отражается на развитии молодых органов, так как не происходит транспорта кальция из старых частей в более молодые. Характерным признаком этого является обесцвечивание конуса нарастания и молодых листочков, а также их скручивание. Наблюдаются и некротические явления — коричневые пятна на молодых листьях. Избыток кальция отрицательно сказывается на поглощении железа, цинка, марганца.
Магний входит в состав хлорофилла. Он активирует многие ферменты. Недостаток магния сопровождается хлорозом листьев — они начинают бледнеть (или розоветь) между жилками от середины к краям, становятся пестрыми, а края листьев скручиваются. Плохо развивается корневая система, растения истощаются.
Железо играет важную роль, участвуя в процессе дыхания растений, а также в синтезе хлорофилла. При недостатке железа у растений развивается хлороз, причем не частичный (как при недостатке кальция или магния), а полный, когда вся поверхность листа постепенно становится бледно-зеленой, почти белой окраски. Сначала хлоротичными становятся молодые листья,
1.3 Метаболизм и физиологические значения азота как одного из самых важных элементов питания
Для растений азот – дефицитный элемент. Если некоторые микроорганизмы способны усваивать атмосферный азот, то растения могут использовать лишь азот минеральный. Растения никогда не выделяют азотистые соединения как продукты отброса и там, где это возможно, азотистые соединения заменены на безазотистые вещества. В почве азот находится в трех формах: NH4+, NO3- и органический азот. Для растений наиболее доступной формой является NO3- , менее доступна форма NH4+.
Для того чтобы сделать доступными для питания растений основные запасы азота в гумусе, необходимо разложить органическое вещество почвы. Этот процесс невозможен без участия различных микроорганизмов.
Процесс превращения органического азота почвы в NН4+ носит название аммонификации. Он осуществляется гетеротрофными микроорганизмами (питаются готовыми органическими веществами) и схематически может быть представлен следующим образом:
органический азот почв --> RNН2 + СО2 + побочные продукты,RNН2 + Н2О = NH3 + RОН, NН3 + Н2О = NH4+ + ОH–.
Биологическое окисление NН3 или NH4+ до NO3– называется нитрификацией.
Еще в 1870 г. Шлезинг и Мюнц доказали опытным путем биологическую природу нитрификации. Для этого они добавляли к сточным водам хлороформ, в результате чего прекращалось окисление аммиака. Основная заслуга в раскрытии механизма нитрификации и выделении осуществляющих этот процесс микроорганизмов принадлежит выдающемуся российскому микробиологу С.Н.Виноградскому. В 1889 г. он открыл бактерии нитрификации и определил две фазы этого процесса.
Бактерии первой фазы окисляют аммиак до азотистой кислоты:
2NH3 + 3O2 = 2HNO2 + 2H2O.
К ним относят бактерии следующих родов: Nitrosomonas, Nitrosocystis, Nitrosolobus, Nitrosospira. Из них наиболее изучен вид Nitrosomonas europaea.
2HNO2 + О2 = 2НNO3.
Среди бактерий, осуществляющих это превращение, различают три рода: Nitrobacter, Nitrospina, Nitrococcus.
Азотистая кислота в почве не накапливается, т. к. обе группы бактерий обычно функционируют последовательно. Ежегодно минерализуется 0,4–4 т/га органического вещества почвы, в основном гумуса. В результате образуется от 20 до 200 кг/га минерального азота. Таким образом, в почве накапливаются ионы NH4+ и NO3–, азот которых доступен для усваивания растениями.
Ионы NH4+ не слишком подвижны, хорошо адсорбируются анионами, трудно вымываются осадками, и поэтому в почвенном растворе их концентрация значительно выше, чем NO3–. В почвах, богатых глинистыми минералами, содержание азота в форме NH4+ может достигать 2–3 т/га. В верхних слоях почвы фиксированный азот NH4+ составляет 5–6% общего содержания азота в почве, в более глубоких слоях, где выше содержание глинистых частиц, – до 20% и более.
Анионы NO3–, напротив, подвижны, плохо фиксируются в почве, легко вымываются почвенными водами в более глубокие слои и водоемы. Содержание нитратов в почве особенно возрастает весной, когда создаются условия, благоприятствующие деятельности нитрифицирующих бактерий. Количество азота NO3– в почвенном растворе сильно варьируется в зависимости от скорости поглощения нитратов растениями, интенсивности микробиологических процессов и процессов вымывания.
При недостатке азота в среде обитания тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней, по соотношению массы корней и надземной части может увеличиваться. Одно из ранних проявлений дефицита – бледно-зеленая окраска листьев, вызванная ослаблением синтеза хлорофилла. Длительное азотное голодание ведет к гидролизу белков и разрушению хлорофилла прежде всего в нижних, более старых листьях и оттоку растворимых соединений азота к более молодым листьям и точкам роста. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желтые, оранжевые или красные тона, а при сильно выраженном азотном дефиците возможно появление некрозов, высыхание и отмирание тканей. Азотное голодание приводит к сокращению периода вегетационного роста и более раннему созреванию семян.
... I II III сумма N I II III сумма N 0 12 22 34 19 19 37 15 71 61 0 37 55 92 72 26 27 46 99 69 Глава 3. Анализ технологии возделывания капусты белокочанной по кассетной технологии в СПК «Береговой» Система выращивания, предложенная далее, соответствует критериям современных тенденций, существующих в западных странах, и эти критерии основываются на практическом ...
... привезённых растений. В результате доращивания в течении 2-7 месяцев происходит адаптация растения к местным условиям. Из теплицы декоративные растения поступают на прилавки цветочных магазинов города. Также на рынке декоративных комнатных растений города Самары представлены растения, выращенные в Самарском ботаническом саду и в тепличном хозяйстве «Декоративные культуры»; небольшое количество ...
... 1335 леса и кустарники 617 приусадебные участки 26 3 Экспериментальная часть 3.1 Методика исследования Исследования по изучению влияния орошения свиностоками комплекса «Родниковский» на накопление нитратного азота в почве и растениях и на качество кормовых культур (прежде всего многолетних трав) и зерновых культур проводились Южноуральским Государственным Проектно - изыскательским ...
... значительно повышало содержание подвижного фосфора в почве, тем самым, улучшая условия фосфорного питания, и положительно влило на рост, развитие и продуктивность сортов овса. 3.4 Влияние условий фосфорного питания на продуктивность различных сортов овса При возделывании овса важную роль играют основные факторы жизнедеятельности: влагообеспеченность, свет, тепло, элементы питания. Изменяя условия ...
0 комментариев