2.14. Освоение скважины

Заключительный технологический этап при бурении эксплуатационных и разведочных нефтяных и газовых скважин связан с освоением продуктивных горизонтов. От качественной реализации технологии освоения зависит последующая эффективность объекта эксплуатации. В комплекс работ по освоению входят: вторичное вскрытие пласта, выбор способа вызова притока из пласта и, при необходимости, методов активного воздействия на призабойную зону с целью устранения вредного воздействия на продуктивный пласт процессов бурения при вскрытии и интенсификации притока [17].

2.14.1 Вторичное вскрытие пласта

Вторичное вскрытие пласта заключается в создании гидравлической связи скважины с пластом.

Во избежание открытого фонтанирования вторичное вскрытие осуществляется на репрессии, величина которой составит 4 - 7% [3].

Для создание гидравлической связи в скважинах, обсаженных эксплуатационными колоннами, для вскрытия применяют стреляющие (кумулятивные, пулевые) и гидропескоструйные перфораторы.

Перфораторы пробивают каналы в продуктивном пласте через стенки обсадных труб и слой затрубного цементного камня.

В настоящее время кумулятивным способом осуществляют свыше 90% всего объема перфорационных работ.

На данном месторождении вторичное вскрытие пласта рекомендуется производить кумулятивными бескорпусными перфораторами. Выбор производим по табл.4.48 [18, табл.4.48, стр. 204].

Наиболее подходящим к данным условиям является ленточный перфоратор ПКС 105Т, который имеет следующие характеристики:

Плотность перфорации, отверстия/метр:

Допустимая 10

За один спуск 6

Максимальный интервал перфорации за один спуск, м 30

Длина канала, м:

σ СЖ =45 МПа 0,275

σ СЖ =25 МПа 0,350

Диаметр канала, мм:

В трубе 44

В породе

σ СЖ =45 МПа 12

σ СЖ =25 МПа 14

ПКС 105Т имеет извлекаемый ленточный каркас, с зарядом в стеклянных или ситалловых оболочках. Перфораторы этого типа имеют пониженную термостойкость по сравнению с корпусными перфораторами. На средних глубинах они обладают более высокой производительностью и лучшей пробивной способностью, чем другие перфораторы. При перфорации с их использованием практически исключается засорение скважины осколками.

Плотность перфорации принимается равной 10 отверстий/метр.

Перед перфорацией устье оборудуется малогабаритной превенторной установкой типа ППМ 125х25, разработанной институтом ЗапСибБурНИПИ и изготавливаемой заводом "Тюменьбурмаш" (ОАО "Гром").

Так как первичное вскрытие продуктивного пласта осуществляется с буровым раствором на водяной основе, то применение в качестве перфорационной жидкости нефти и нефтепродуктов приведёт к образованию вязкой водонефтяной эмульсии, которая будет препятствовать движению флюида к призабойной зоне скважины и способствовать снижению коэффициента восстановления проницаемости.

Поэтому в качестве перфорационной жидкости предлагается использовать солевой раствор, применение которого получило широкое распространение на Игольско-Таловом месторождении.

2.14.2 Вызов притока из пласта

Чтобы получить приток из продуктивного горизонта, необходимо давление в скважине снизить значительно ниже пластового. Существуют различные способы снижения давления, основанные либо на замене тяжелой промывочной жидкости на более легкую, либо на плавном или резком понижении уровня жидкости в эксплуатационной колонне [17].

Перед началом вызова притока устье скважины оборудуется фонтанной арматурой (АФ). Технологией вызова притока предусматривается применение насосно-компрессорных труб (НКТ) диаметром 73 мм а рабочее давление на устье не превышает 21 МПа, то проектируется применение фонтанной арматуры АФ1-65х21ХЛ.

В последнее время просматривается необходимость перехода к технологиям освоения скважин в сторону ресурсосберегающих и наносящих минимальный вред окружающей среде методов работы на скважине. Наиболее полно этому процессу отвечает освоение скважин с помощью поршневого вытеснения - свабирования.

В классическом виде свабирование представляет собой процесс периодического спуска поршневого узла (сваба) под динамический уровень жидкости глушения в НКТ и последующего его подъема.

Спуск и подъем сваба производится с помощью каротажного подъемника (ПКС-5) на геофизическом кабеле. Глубина погружения сваба под уровень жидкости, из соображения допустимого усилия нагрузки в узле заделки троса, достигающего 3 тонны, не превышает 500…550 м.

Так как сваб имеет гибкую связь с устьевым оборудованием, то на последних циклах свабирования к нему можно присоединить регистрирующие приборы (манометр, термометр, расходомер, пробоотборник и т.д.) и совместить процесс исследования скважины со стадией понижения уровня жидкости, что также значительно сокращает рабочее время. Кроме того, геофизический кабель создает электрическую связь с прибором, а это предполагает не только регистрацию, но и контроль за моментом начала притока и, таким образом, своевременно прекратить свабирование и целиком переключиться на процесс исследования скважины, а также получить качественную глубинную пробу и сведения о гидродинамических характеристиках пласта.

При освоении проектной скважины планируется применение усовершенствованной технологической схемы свабирования с использованием отечественного оборудования.

Для того, чтобы использовать отечественные лубрикаторы, имеющие длину не превышающую 2 м, необходимо иметь сваб с регулируемой поперечной геометрией, позволяющей при спуске исключить трение между его уплотнительными элементами и внутренней стенкой НКТ, что значительно уменьшает массу груза, а значит, и общую длину свабового узла.

Принципиально новый технологический процесс представляет собой спуск в скважину НКТ, в состав которых входят пакерный узел гидравлического действия и обратный клапан. При достижении заданной глубины спуска НКТ создается избыточное давление, приводящее в действие пакерный узел. На фонтанной арматуре монтируется лубрикатор и далее выполняются операции в соответствии с классической технологией свабирования, но так как затрубное пространство скважины изолировано пакером, то для того, чтобы понизить уровень жидкости в НКТ на 1000 м, достаточно вытеснить 3...4 м рабочей жидкости, для чего необходимо сделать не более двух-трех циклов свабирования

Изменение поперечных размеров сваба происходит путем подачи энергии по геофизическому кабелю, либо (при нарушении внутреннего гидродинамического состояния сваба) при спуске его до расчетной глубины, при которой уплотнительные элементы сваба полностью перекроют внутреннее сечение НКТ. Отсюда возникает дополнительная возможность исследовать скважину не только в режиме притока, но и в закрытом режиме, когда в подпакерном пространстве происходит восстановление забойного давления до пластового. В этом случае возможно получение информации о состоянии прискважинной зоны и промыслово-добывных параметрах продуктивного пласта, которые невозможно получить без применения специального испытательного оборудования.

Конструкции сваба второго поколения и отработка отдельных элементов технологии свабирования совместно с пакерным узлом имеет существенные преимущества:

обеспечивается полная безопасность процесса освоения скважины за счет изоляции внутреннего ее пространства лубрикаторным узлом;

время, затрачиваемое на проведение одного снижения уровня жидкости в скважине, в 1,5...2,0 раза меньше, чем при компрессировании;

число необходимого оборудования сокращается вдвое;

многократно уменьшается потребление топливно-энергетических ресурсов;

значительно сокращается антропогенное воздействие на окружающую среду за счет уменьшения числа рабочего персонала и сокращения времени на освоение и исследование скважин.

2.15 Выбор и обоснование буровой установки, ее комплектование

Расчет режимов СПО и оснастки талевой системы

Центральным звеном бурового комплекса является буровая установка. При выборе буровой установки необходимо учитывать ряд основных факторов: глубина бурения, допустимая нагрузка на крюке, электрофицированность района работ, цель бурения.

Учитывая конкретные условия бурения, а именно то, что площадь ведения буровых работ заболоченная и бурение ведется с кустовых площадок, район обеспечен электроэнергией и глубина бурения скважин не превышает 3200 м, выбирается буровая установка типа БУ 3200/200 ЭК-БМ.

Согласно требования изложенным в [19] буровая установка должна соответствовать ГОСТ 16293-82, при этом также должны выполняться следующие условия:

[Gкр] / Qбк > 0,6; (2.138)

[Gкр] / Qоб > 0,9; (2.139)

[Gкр] / Qпр > 1, (2.140)

где Gкр - допустимая нагрузка на крюке, тс;

Qок - максимальный вес бурильной колонны, тс;

Qоб -максимальный вес обсадной колонны, тс;

Qпр -параметр веса колонны при ликвидации прихвата, тс.

Максимальный вес бурильной колонны составляет QБК =67076 кг = 67,07 тс.

Максимальный вес обсадной колонны составляет QОБ =755,7 кН =75,57 тс.

Параметр веса колонны при ликвидации прихвата определяется по формуле:

Qпр = k × Qмах тс, (2.141)

где k - коэффициент увеличения веса колонны при ликвидации прихвата (k = 1,3);

Qмах - наибольший вес одной из колонн, тс.

Qпр = 1,3 × 67,07=87,19 тс.

По условию (2.138):

200/67,07=2,98 >0,6.

По условию (2.139):

200/75,57=2,64 >0,6.

По условию (2.140):

200/87, 19=2,29 >1.

Из вышеприведенных расчетов видно, что все условия выполняются, следовательно, буровая установка для бурения проектируемой скважины выбрана верно.

Техническая характеристика БУ 3200/200 ЭК-БМ.

Условная глубина бурения, м 3200

Допустимая нагрузка на крюке, кН (тс) 2000 (200)

Оснастка талевой системы 5×6

Высота основания (отметка пола буровой), м 8,5

Ротор Р-560

Клиновой захват ПКР-560

Тип бурового насоса УНБТ-950

Мощность бурового насоса, кВт 950

Буровой вертлюг УВ-250 МА1

Компрессор АВШ6/10

Талевый блок УТБК-5×200

Буровая лебедка ЛБ-750

Объем емкости для долива, м3 12

Полезный объем емкостей бурового раствора, м3 120

Полезный объем емкостей для воды вне эшелона, м3 100

Расстояние от оси скважины до края амбара, м 18

Производится расчет режимов СПО.

Определяется скорость крюка при различных скоростях лебедки по формуле:

Vкрi=Vi/Qт м/с, (2.142)

где Vкрi- скорость крюка на различных передачах лебедки;

Vi- i-я скорость вращения барабана лебедки, м/с;

Qт- вес талевой системы (Qтс=10 тс = 100 кН).

Для лебедки типа ЛБ-750 скорость вращения барабана лебедки на различных скоростях следующая:

V1=2 м/с; V4=7,36 м/с;

V2=3,04 м/с; V5=11,28 м/с;

V3=4,88м/с; V1=17,29 м/с.

По формуле (2.142)

Vкр1 =2/10=0,2 м/с; Vкр4 =7,36/10=0,736 м/с;

Vкр2 =3,04/10=0,304 м/с; Vкр5 =11,28/10=1,128 м/с;

Vкр3 =4,88/10=0,488 м/с; Vкр6 =17,29/10=1,729м/с.

Определяется грузоподъемность лебедки на крюке QЛiК, при различных скоростях подъема Vi по формуле:

QЛiК = (Nб × h) / Vкрi - Qтс кН, (2.143)

где Nб- мощность на барабане лебедки, кВт;

h- коэффициент полезного действия (h = 0,95).

QЛ1К = (560 × 0,95) / 0,2 - 100= 2560 кН;

QЛ2К = (560 × 0,95) / 0,304 - 100= 1650 кН;

QЛ3К = (560 × 0,95) / 0,488 - 100= 990 кН;

QЛ4К = (560 × 0,95) / 0,736 - 100= 623 кН;

QЛ5К = (560 × 0,95) / 1,128 - 100= 371 кН;

QЛ6К = (560 × 0,95) / 1,729 - 100= 197 кН.

Определяется условный вес одной свечи q по формуле

q= ( (Qбк+Qтс) × l) /L кН, (2.144)

где l - длина одной свечи (l = 25 м);

L - глубина скважины по стволу, м.

q= ( (670,76+100) × 25) /3105=6,2 кН.

Определяется общее количество свечей n по формуле

n=L/l, (2.145)

n=3105/25=125 шт.

Определяется количество свечей, которые можно поднять из скважины на каждой скорости лебедки ni по формуле

ni= ( (Qбк+Qтс) - QЛi - 1К) / q. (2.146)

Количество свечей поднимаемых на 6-ой скорости лебедки:

n6= 197/ 6,2=31 шт.

Количество свечей поднимаемых на 5-ой скорости лебедки:

n5= ( (670,76+100) - 197) /6,2=82 шт.

Количество свечей поднимаемых на 4-ой скорости лебедки:

n4= ( (670,76+100) - 371) /6,2=64 шт.

Количество свечей поднимаемых на 3, 2, 1 скоростях не определяется, так как на 6, 5 и 4 скорости можно поднять всю бурильную колонну.

Режимы СПО приведены в табл.2.17.

Таблица.2.17 Режимы СПО

Скорость лебедки Количество поднимаемых свечей, шт

4

5

6

12

82

31


3. Вспомогательные цехи и службы 3.1 Ремонтная база

В результате длительной эксплуатации бурового оборудования либо при возникновении аварийных ситуаций происходит износ или поломка бурового оборудования.

Ремонтом вышедшего из строя оборудования занимается центральная база производственного обеспечения (ЦБПО), которая подразделяется на:

прокатно-ремонтный цех бурового оборудования (ПРЦБО);

прокатно-ремонтный цех труб и трубопроводов (ПРЦТ и Т).

В состав прокатно-ремонтного цеха бурового оборудования входят комплексные бригады по проведению планово-предупредительных ремонтов бурового оборудования, противовыбросового оборудования и фонтанных арматур.

В состав прокатно-ремонтного цеха труб и трубопроводов входит участок по ремонту труб и трубопроводов. Численный состав бригад ремонтной базы определяется исходя из трудоемкости работ по техническому обслуживанию.

Состав ремонтной службы меняется в зависимости от работ предприятия.

С целью повышения ответственности рабочих на своих местах, за каждым закреплена определенная группа оборудования.

Капитальный ремонт крупноблочного оборудования производится на ремонтно-механических заводах по разовым заявкам.

Текущий ремонт оборудования осуществляется слесарями, входящими в состав бригады, работающими на месторождении.


3.2 Энергетическая база

В табл.3.1 представлены сведения об электрическом снабжении буровой, его источниках и характеристики линии электропередач.

Таблица 3.1 Электроснабжение

Источник электроснабжения Характеристика ЛЭП Заявленная мощность
Наимено-вание расстояние до буровой, км количество одновременно работающих установок  ЛЭП, кВ длина, км транс форматоров

суммарная системы электроснабжения

буровой

Энерго-система 15 1 6 15 292 1396,8

Данные о количестве потребляемой энергии при подготовительных работах, бурении, креплении и испытании скважины приведены в табл.3.2

Таблица 3.2 Количество потребляемой электроэнергии

Наименование

работ

Норма расхода электроэнергии Количество потребляемой электроэнергии, кВт×ч
Единицы измерения Величина Источник нормы На первую скважину куста На последующие
Подготовительные работы кВт×ч/сут 4140 ЭСН табл.49-404 16560 4968
Бурение и крепление кВт×ч/м 68 ЭСН табл.49-405 181832 181832
Испытание в колонне с передвижной установкой кВт×ч/сут 1520 ЭСН табл.49-407 18665,6 18665,6
Всего на скважину 217057,6 205465,6

3.3 Водные ресурсы и водоснабжение

На каждом кусте, где ведётся бурение скважин на нефть и газ для бытовых нужд, а так же для технических нужд бурится неглубокая скважина на воду, глубина и параметры которой задаются "Рабочим проектом на бурение разведочно-эксплуатационных скважин для водоснабжения" Том-3-856, 1988г. В данном случае водяная скважина бурится до чеганской свиты, глубиной 240 м. Скважина артезианская, расположена на расстоянии 60 м от буровой. Рабочий расход составляет 6,2 м3/ч, что вполне удовлетворяет потребности в воде: техническая вода 120 м3/сут, а остальное на бытовые нужды. Объем запасных емкостей для воды составляет 50 м3. Скважина оборудуется фильтрами для очистки воды, в обвязку скважины входит водопровод диаметром 0,05 м и длиной 60 м.

3.4 Приготовление раствора

Буровой раствор для бурения скважин приготавливается непосредственно на буровой из привозных материалов. Руководство над приготовлением и контролем за параметрами раствора занимается инженер-технолог по буровым растворам, непосредственным контролем за параметрами во время бурения занимается лаборант-коллектор, приготовлением и обработкой раствора занят второй помощник бурильщика.

На буровой ведется журнал, в котором лаборант-коллектор ведет записи о параметрах бурового раствора, количестве использованных химреагентов, с периодичностью в 2 часа. Каждую неделю заполняется паспорт качества бурового раствора, в котором обозначаются основные качественные параметры бурового раствора и отправляется проба бурового раствора в лабораторию буровых и промывочных растворов.


3.5 Транспорт

Транспортировка грузов и вахт наземным транспортом обеспечивается управлением технологического транспорта УТТ. Парк УТТ составляет как колесная, так и гусеничная техника. В зависимости от времени года, и состояния дорожного полотна применяется та или иная техника.

К месторождению ведет автотрасса Стрежевой - Пионерный - Новый Васюган - Игол с бетонным покрытием, по которой ведется транспортировка грузов и рабочего персонала. На территории месторождения проложены дороги к кустам из круглого леса, отсыпанные грунтом. В зимнее время также используются зимние временные дороги.

Транспортировка работников из Стрежевого осуществляется вертолетами Ми-8, из Томска самолетами Ан-24 до вахтового посёлка Пионерный, а далее 250 км по автотрассе с бетонным покрытием автобусами туристического класса Кароса.

3.6 Связь и диспетчерская служба

Связь с буровой бригадой на Игольско-Таловом месторождении осуществляется с помощью радиостанции FM 10-164Д, которая находится в культбутке городка. В 6, 8, 12, 16,20 и 24 часа бурильщик работающей вахты сдает сводку в районную инженерно-техническую службу (РИТС), расположенную в поселке Игол. Сводка передается в центральную инженерно-техническую службу (ЦИТС), начальником смены РИТС, посредством телефонной связи. Помимо этого начальник смены РИТС принимает все распоряжения руководства внесением сообщений в журнал и доводит их до мастера бригады, также ведет диспетчеризацию служб и техники предприятия относящихся к месторождению. Связывается с подрядными организациями (геофизиками, дорожными строителями) и заказчиком (НГДУ).

Отсутствие простоев в работе во многом зависит от отлаженности работы диспетчерской службы.

3.7 Культурно-бытовое и медицинское обслуживание

Игольско-Таловое месторождение расположено на значительном расстоянии от Стрежевого и Томска, поэтому работы на буровой ведутся вахтовым методом, работающие живут и трудятся на кусту в течении вахты (15 дней). Для комфортабельного проживания устанавливается передвижной вахтовый городок, состоящий из 6 вагончиков для проживания рабочих буровой вахты, бурового мастера и инженеров-технологов, кухни-столовой, бани-сауны, сушилки и культбутки.

Медицинскую помощь можно получить в медпункте поселка Игол, в экстремальном случае на куст вызывается специальная бригада скорой помощи на вертолетной технике для транспортировки пострадавшего в больницу г. Стрежевого, обеспеченную необходимым оборудованием и высококвалифицированным персоналом. На кусте в обязательном порядке находится медицинская аптечка для оказания первой медицинской помощи на месте.


4. Безопасность жизнедеятельности 4.1 Безопасность в рабочей зоне

Вопросам охраны труда в конституции Российской Федерации отводится особое место. В ней говорится, что Российское государство заботится об улучшении условий и охране труда, его научной организации о сокращении, а в дальнейшем и о полном вытеснении тяжелого физического труда на основе комплексной механизации и автоматизации производственных процессов во всех отраслях народного хозяйства.

В нефтяной и газовой промышленности при неправильной организации труда и производства не соблюдении мероприятий по проводке скважин возможны следующие опасности:

Механические травмы.

Поражение электрическим током.

Пожары.

Взрывы.

Ожоги.

Также возможно появление следующих вредностей:

Климатические условия.

Шум.

Вибрация.

Освещение.

Запыленность и загазованность.

Механические травмы - возможны во время СПО, падения с высоты различных предметов, а также деталей вышки и обшивки буровой, недостатки в содержании рабочего места, отсутствие ограждений движущихся частей бурового оборудования, применение опасных приемов труда и т.д.

Поражение электрическим током - возможно из-за доступности прикосновения к токоведущим частям, отсутствия защитного заземления, не применения защитных средств при обслуживании электроустановок.

Пожары - возникают вследствие взаимодействия открытого огня с огнеопасными веществами (нефть, газ и т.д.), так как территория может быть замазучена.

Источники пожара:

короткое замыкание, перегрев проводки;

открытый огонь;

удар молнии;

статическое электричество.

Взрывы - возможны при:

при наличии горючих веществ;

наличие окислителя или среды;

наличие сосудов под давлением;

источника зажигания (открытый огонь, короткое замыкание, статическое электричество).

Ожоги - возможны вследствие небрежного хранения и обращения с химическими реагентами, открытым огнем и горючими материалами, от электрического тока.

Мероприятия по устранению опасных и вредных факторов.

Механические травмы. Для устранения причин возникновения механических травм необходимо все работы проводить согласно [3] и [20]. Кроме того, необходимо:

оградить вращающиеся части механизмов;

обеспечить машинные ключи страховочными канатами;

проводить своевременно инструктажи по технике безопасности.

при ремонте должны вывешиваться знаки оповещающие о проведении ремонтных работ;

весь рабочий персонал должен быть обеспечен средствами индивидуальной защиты (касками, спецодеждой, рукавицами и т.д.) согласно нормам: ''Типовые отраслевые нормы бесплатной выдачи спецодежды'', утвержденных Минтруда России, №67, 16.12.97 г.

проведение проверки состояния ремней, цепей, тросов и их натяжения;

проведение плановых и неплановых проверок пусковых и тормозных устройств;

при работе на высоте рабочий должен быть обеспечен страховым поясом.

Буровая вышка должна быть обеспечена маршевыми лестницами (угол падения их не более 60°, ширина 0,7 м). Между маршами лестниц следует устроить переходные площадки. Расстояние между ступеньками по высоте не более 25 см, они должны иметь уклон внутрь 2÷5°. С обеих сторон ступени должны иметь планки или бортовую обшивку, высотой 15 см. Пол должен быть сделан из рифленого металла, исключающего возможность скольжения.

Все грузоподъемные механизмы грузоподъемностью свыше 1тонны должны быть поставлены на учет в Госгортехнадзор и испытаны в присутствии непосредственного начальника и представителя Госгортехнадзора [21].

Испытание включают в себя:

внешний осмотр;

статическое испытание;

динамическое испытание.

В конструкции грузоподъемных механизмов обязательно должны быть предусмотрены системы защиты (блокировка, дублирование и т.д.), которые также подлежат испытанию.

Поражение электрическим током. Предупреждение электротравматизма на объектах достигается выполнением следующих мероприятий:

проектирование, монтаж, наладка, испытание и эксплуатация электрооборудования буровых установок должны проводиться в соответствии с требованиями ''Правил устройства электроустановок'' (ПУЭ), ''Правил эксплуатации электроустановок потребителей'' (ПЭЭП), утвержденных Госэнергонадзором 31.03.92 г. и ''Правил техники безопасности при эксплуатации электроустановок потребителей'' (ПТБЭ), утвержденных Главэнергонадзором 21.12.84 г.

обеспечение недоступности прикосновения к оголенным токоведущим частям, находящимся под напряжением;

применение блокировочных устройств;

применение защитного заземления буровой установки;

применение изолирующих, защитных средств (резиновые перчатки, боты, инструмент с изолированными ручками) при обслуживании электроустановок;

допускать к работе специально обученных лиц, имеющих группу по электробезопасности не ниже IV.

Рассчет контура заземления.

При расчете пользуются схемой для расчета контура заземления представленной на рис.4.1

к основанию буровой

 

70-80см

 
 50мм

Рис.4.1 Схема для расчета контура заземления

Сопротивление контура на буровой RЗ≤ 4 Ом.

Рассчитывается сопротивление одного электрода (длина которого l =2,5 м, диаметр d =0,05 м, заложенного в грунт на глубину h =1,9 м до середины электрода) по формуле:

Rт=0,366 × r/ l × (lg 2×l/d+1/2×lg (4×h+l) / (4×h-l)) Ом, (4.1)

где r - удельное сопротивление почвы, Ом∙м (=70 Ом∙м);

l - длина электрода;

h - глубина до половины электрода, м;

d - диаметр электрода, м.

Rт=0,366 × 70/ 2,5× (lg 2×2,25/0,05+1/2×lg (4×1,9+2,5) / (4×1,9-2,5)) =22 Ом.

Необходимое число электродов n определяется по формуле

n= (Rт × ηс) / (RЗ × ηЭТ), (4.2)

где RЗ - допустимое сопротивление заземления, Ом (RЗ= 4 Ом);

ηс - коэффициент сезонности (ηс =2);

ηЭТ - коэффициент экранирования труб (электродов), (0,2< ηЭТ <0,9).

n= (22 × 2) / (


Информация о работе «Эксплуатационные скважины для освоения месторождений Западной Сибири»
Раздел: Геология
Количество знаков с пробелами: 245136
Количество таблиц: 36
Количество изображений: 9

Похожие работы

Скачать
122005
6
4

... нового типа аппаратуры - автономного прибора акустического каротажа АК-Г, было принято решение о его испытании и широком применении при геофизических исследованиях в горизонтальных скважинах Федоровского месторождения Западной Сибири. Автономный скважинный прибор акустического каротажа АК-Г предназначен для измерений параметров распространения продольной и поперечной волн в скважинах, включая ...

Скачать
108163
13
4

... , интересных с точки зрения нефтенасыщенности, в разрезе скважины нет. В связи с тем, что расстояние до нефтесборной сети более 5км., скважина подлежит консервации. Пример проведения гидродинамических исследований Скважина № 1478 Приразломного месторождение Интервал испытания: 2716-2753,6 м Дата испытания: 17 ноября 1995 г Пласт БС16-18 Условия испытания: Испытание проведено в обсаженном ...

Скачать
94353
6
12

... к объектам. В данном расчете нормы времени на спуск и подъем прибора на 3000 метров - средняя глубина скважин Приобского месторождения и на подготовительно - заключительные работы взяты из регламента и методики планирования объектов промысловых гидродинамических исследований и таблиц. В затратах труда не учтено участие оператора по исследованию скважин, водителей передвижных лабораторий, ...

Скачать
85931
2
0

... строгий учет расходуемых материалов; — переход на более экономичные виды сырья, замена пищевого сырья синтетическим. 2 Практическое исследование сырьевой базы химической промышленности РФ   2.1 Сырьевая база химической промышленности РФ   В истории российской нефтедобычи (преимущественно в советской) четко наблюдалась смена основных нефтедобывающих провинций: Кавказ - Волго-Урал - Западная ...

0 комментариев


Наверх