3.3 Коагулянт – активированный кальций-алюминат
В 2000 году Караваном С.В., Хрипуном М.К. и Мюндом Л.А. был изобретен коагулянт – активированный кальций-алюминат, который содержит соединения: алюминия, оксид кремния, оксид кальция, оксид железа, оксид натрия, оксид магния и диоксид серы. Получают его обработкой шлама – промежуточного продукта производства глинозема, причем обработку ведут 2%-ным водным раствором бикарбоната натрия и сульфата натрия в соотношении 1:1 в течение не менее 5 мин с последующим отделением, высушиванием и измельчением осадка. Очистку сточных и природных вод ведут активированным кальций-алюминатом в виде водной суспензии в количестве не менее 3 мг/дм3 при перемешивании не менее 0,1 мин. Этот новый коагулянт фактически является в большей степени адсорбентом и при этом на поверхности частиц суспензии происходит адсорбция, растворенных в воде, как ионов тяжелых металлов, так и их гидроксидов и основных солей. Частицы дисперсной фазы суспензии являются центрами хлопьеобразования и одновременно утяжелителями, благодаря чему происходит ускорение процесса коагуляции и как следствие в целом повышается эффективность очистки вод. Поскольку алюминий вводится в виде практически нерастворимых соединений, отсутствует остаточное содержание ионов алюминия, что приводит к повышению степени очистки обрабатываемой воды. Технический результат, достигаемый коагулянтом для очистки природных и сточных вод, способом его получения и использования, состоит в получении высококачественной питьевой воды для сохранения здоровья и долголетия человека, в эффективной и надеждой очистке сточных вод с целью обеспечения экологической безопасности человека и окружающей среды [12].
3.4 Коагулянты из природных минералов
Изучены способы получения коагулянтов из бокситов, каолинов, глин и других минералов, содержащих алюминий, суть которых заключается в разложении этих минералов серной кислотой с последующей кристаллизацией готового продукта. Однако эти способы сложные и трудоемкие [11,12].
3.5 Новые алюминий содержащие коагулянты
Из уровня техники известны способы очистки природных и сточных вод алюминий содержащими коагулянтами. Способ очистки природных и сточных вод, основанный на использовании в качестве коагулянта водного раствора сульфата алюминия, выбранного в качестве прототипа. Однако этот способ имеет некоторые недостатки, связанные со следующими отрицательными факторами при его использовании:
– низкая эффективность очистки воды при пониженных температурах (ниже 4°С);
– увеличение солевого фона очищаемой воды;
– повышение содержания сульфатов;
– снижение щелочности и водородного показателя;
– увеличение коррозионной активности
– значительное количество остаточного алюминия в очищенной воде.
Все эти факторы в целом приводят к сокращению срока службы сетей и водоводов и снижению их пропускной способности.
Известен способ очистки природных и сточных вод с использованием алюминий содержащего коагулянта, наиболее близкий по составу к предлагаемому изобретению и выбранный в качестве прототипа.
Недостатками этого способа являются сложность дозирования коагулянта за счет необходимости непрерывного и постоянного перемешивания для предотвращения выпадения в осадок частиц дисперсной фазы [5,15].
Гидроксохлорид алюминия (ГХА) марки Б – коагулянт нового поколения, предназначен для подготовки питьевой воды при обработке поверхностных и подземных вод, а также для очистки сточных и оборотных промышленных вод металлургических заводов, целлюлозно-бумажных комбинатов, нефтеперерабатывающих и химических предприятий, бытовых и городских стоков.
Применение гидроксохлорида алюминия позволяет интенсифицировать процесс водоподготовки и улучшить качество воды. Очень эффективен при обработке воды с температурой 0–9°C.
Гидроксохлорид алюминия марка Б выпускают в виде твердого продукта. Внешний вид твердого продукта – пластинки и гранулы неопределенной формы различного размера белого или желтого цвета; срок хранения 3 года.
Плюсы гидроксоалюминия в сравнении с традиционным реагентом (сульфатом алюминия) Снижение расхода товарного реагента в 8–10 раз; Уменьшение времени коагуляции в 1,5–3,0 раза; Возможность эффективно очищать воду в широком диапазоне температур, включая диапазон 0,5–9 градусов Цельсия; Значительное уменьшение или полное отсутствие остаточного алюминия в очищенной воде; Исключение или резкое снижение образующихся гипсовых отложений в технологическом оборудовании и трубопроводах; Позволяет отказаться от применения флокулянтов[14].
3.6 Новый коагулянт-флокулянт МПГС (минеральный полиреагентный гель-сорбент)
Предложен новый коагулянт-флокулянт минеральный полиреагентный гель-сорбент (МПГС) вместо используемых сейчас крайне малоэффективных сернокислых алюминия и железа. МПГС может использоваться при водоподготовке для очистки поверхностных вод, а также очистки сточных вод ТЭЦ и очистки обратной воды по горячему контуру, которая возвращается в котлы теплоснабжения и горячего водоснабжения.
Водоподготовка крайне затруднена из-за сложности загрязнений воды по химическому и дисперсному составу.
Примеси, загрязняющие поверхностную воду, содержат ультрадисперсные частицы кремнезема, оксидов железа, глины, ила гуминовых соединений и т.д. По степени дисперсности они делятся на:
– грубодисперсные (размеры частиц более 100 нм)
– коллоиднодисперсные (размеры частиц от 1 до 100 нм)
– молекулярнодисперсные – растворенные соли (размеры частиц менее 1 нм).
Особую трудность при водоочистке составляет удаление коллоидных примесей – они устойчивы, так как каждая частица защищена двойным электрическим слоем сорбированных противоионов.
Вместо малоэффективных коагулянтов – сернокислых алюминия и железа предложено использовать МПГС, в состав которых входят ультрадисперсные частицы соединений железа, алюминия, кремния, кальция, титана и др., что обеспечивает более глубокую коагуляцию примесей любого химического и дисперсного состава: для каждого загрязнителя воды находится свой коагулянт.
МПГС готовят из местных материалов, например, глины и растворов (кислых и щелочных), полученных при регенерации ионообменных материалов ионообменной очистки в системе водоподготовки.
МПГС обладают коагуляционными и сорбционными свойствами, в десятки и сотни превышающими промышленные коагулянты и твердые сорбенты соответствующего состава. Они экологически безвредны, просты в изготовлении, затраты на их изготовлении заключаются в простом смешивании широкодоступных компонентов.
Использование МПГС состоит в добавлении к воде пасты геля и не требует капитальных затрат на строительство и переоборудование очистных сооружений. Это позволяет экономить до 90% затрат на водоочистку за счет стоимости реагентов и отсутствия реагентного оборудования для растворения и подготовки коагулянтов, ликвидирует штрафы за загрязнение среды. [12,15, 16]
Заключение
Принципиальное отличие новых современных коагулянтов от уже известных (в том числе и от прототипа) состоит в существенно ином подходе получения новых коагулянтов. Новые коагулянты, выполняя свои функции, фактически является в большей степени адсорбентами и при этом на поверхности частиц суспензии происходит адсорбция растворенных в воде как ионов тяжелых металлов, так и их гидроксидов и основных солей.
По сути частицы дисперсной фазы суспензии являются центрами хлопьеобразования и одновременно утяжелителями, благодаря чему происходит ускорение процесса коагуляции и как следствие в целом повышается эффективность очистки вод.
Список используемых источников
1. Справочник по очистке природных и сточных вод. Пааль Л.Л., Кару Я.Я., Мендер Х.А., Репин Б.Н. – М.: Высш. шк., 1994, с. 51–58.
2. Патент РФ 2126365, приоритет 07.08.97.
3. Запольский А.К., Баран А.А. Коагулянты и флокулянты в процессах очистки воды. Л.: Химия, 1987, с. 48–79.
4. Патент РФ 1556525, кл. С 01 Р 7116, опубл. 15.12.1994.
5. Справочник по свойствам, методам анализа и очистки воды. Кульский Л. А. и др., ч. 1, с. 607–622 и ч. 11, с. 681–700, Киев: Наукова думка, 1980.
6. Строительные нормы и правила 2.04.02–84 Водоснабжение. Наружные сети и сооружения. М.: Стройиздат, 1985, с. 23.
7. Строительные нормы и правила 2.04.03–85 Канализация. Наружные сети и сооружения. М.: СИТП Госстрой СССР, 1986. С. 48.
8. Стремилова Н.Н. Новый высокоэффективный коагулянт на основе соединений титана для очистки природных и сточных вод. Тезисы докладов на III Международном конгрессе «Экватек-98», 26–30 мая 1998. Москва. C. 311.
9. И.М. Астрелин, В.А. Запольский, С.В. Лысенко Исследование процесса получения смешенного коагулянта из отходов производства/ Ж. прикл. Химии. – 1999,62, №11, с. 2611–2613
... процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ. 3.2.3 Сорбция Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях. Сорбция – это процесс поглощения вещества из окружающей среды твердым телом или жидкостью. Поглощающее тело называется ...
... для этого реагентный метод или мембранные методы обессоливания (обратный осмос, электродиализ). По технологическим процессам и, соответственно, применяемому оборудованию, методам очистки сточных вод гальванического производства можно дать следующую классификацию: · механические / физические (отстаивание, фильтрация, выпаривание); · химические (реагентная обработка); · коагуляционно ...
... мембран, кроме соотношения размеров молекул, частиц и размеров пор, влияет обменное взаимодействие между растворенным веществом и веществом мембраны. Ультрафильтрация позволяет производить очистку сточных вод от примесей нефтепродуктов, когда гидрофобные молекулы углеводородов задерживаются гидрофильными полярными ацетатцеллюлозными мембранами (АЦМ) с размерами пор, превышающими размеры молекул ...
... , а тяжелые примеси вдоль конической части перемещаются вниз и выводятся через патрубок шлама. Промышленность выпускает напорные гидроциклоны нескольких типоразмеров. Для грубой очистки применяют гидроциклоны больших диаметров. При целесообразности глубокой очистки сточной воды используют схему последовательного соединения различных типоразмеров гидроциклонов. При такой сложной схеме соединения ...
0 комментариев