4.3 Расчет колонны рабочей площадки

Расчетная схема:

Колонна закреплена шарнирно.

Сила, сжимающая колонну:

N=2*k*V

Где V – опорная реакция главной балки от расчетных нагрузок 854,4 кН,

k =1.02 – коэффициент, учитывающий собственный вес колонны.

N=2*1.02*854,4=1743 кН

Геометрическая длина колонны:

Lk = H-(tпл+h)+hф

Где Н – отметка верха железобетонной плиты, 5,1 м

tпл – толщина плиты, 15 см

h – высота главной балки, 160 см

hф – величина заглубления верха фундамента относительно уровня чистого пола, 80 см

Lk =510-15-160+80=415 см

Расчетная длина колонны в плоскости главных балок:

lef*x =µ* Lk

где µ - коэффициент расчетной длины по (1, табл. 71а) = 1

lef*x =415 см

Расчетная длина из плоскости главных балок:

lef*y =µ* Lk

где µ = 1

lef*y = 415 см

Сталь для колонны по (1) – С245.

Поперечное сечение колонны – прокатный двутавр с параллельными гранями полок по СТО АСЧМ 20-93 (3).

Сечение подбирается из условия

A > N/(φmin*Ry*γc)

При λзад = 70 по (1, табл 72) φmin = 0.654

А=1743/(0.654*240000)=0,011104=111,04 см²


Принимаем двутавр 60ШЗ.

A=181,1 см²

ix = 24,35см iy = 7,17 см

b=3,2 см h= 58,0 см

Проверка на устойчивость

σ = N/(φ*A) < Ry*γc

γc=1.1

σ =1743/(0.654*181,1) < 24 кН/см²

17,4 кН/см² <24 кН/см²

Проверка на гибкость:

λx = lef*x/ix < [λ]

λy = lef*y/iу < [λ]

где ix, iу –радиусы инерции сечения колонны по (3),

[λ] – предельное значение гибкости для колонн (1, табл 19)

[λ]=180-60*α

α=N/(φ*Α*Ry*γc) =1743/(0.654*181,1*24*1.1)=0.55

[λ]= 180-60*0.5=150

λx = 415/20,56=20,18 < 150

λy = 415.5/6,81=60,93 < 150

Конструирование и расчет оголовка колонны:

Толщина опорной плиты – 1,5 см.

Высота вертикальных ребер жесткости назначается из условия прочности сварных швов, прикрепляющих ребра к колонне:

βf = 0,7 по (1) для полуавтоматической заводской сварки

Rwf = 200МПа

γwf =1

kf =0,6 см

γc = 1

 

Конструктивно hs < 0.6*h

где h – высота сечения колонны

0,5м 0.6*58 = 0,348м

В то же время hs > 85* βf*kf

0,5 < 85*0,7*0,6=0,35м

Ширина bs и толщина ts вертикальных ребер назначаются из условия прочности при смятии торца ребра под нагрузкой от главных балок:

σ = N/ts*bs < Rp*γc

где bs = bр+2*t, t – толщина опорной плиты колонны.

bs = 32+2*2 =36 см

Rp = 33,6 кН/ (1)

ts =1743/(36*1*33,6) = 1,44 см

 

Расчет базы колонны

Колонна шарнирно опирается на фундамент.

Размеры опорной плиты в плане:

Ширина плиты

Впл = bf+2*(tmp+c)

tmp = 1 см – толщина траверсы

c = 6 см – ширина свеса

Впл =30+2*(1+6)=47 см

Длина плиты определяется из условия прочности бетона под плитой:

Aпл = N/Rф,

где Rф = 1.2*Rпр.б – прочность бетона фундамента, зависящая от призменной прочности бетона Rпр.б , которая принимается по классу прочности бетона (3, табл. 6.7) и равна 0.85 МПа для бетона марки В15.

Aпл – площадь опорной плиты.

Rф = 1.2*0.85= 1.02 МПа

Апл=1743/1,02 = 1708,8 см²

Длина опорной плиты Lпл > Апл/Bпл должна быть достаточной для размещения и крепления колонны. В то же время для базы желательно выполнение условия Lпл/Bпл = 1-1.3

Lпл=1708,8/47=36,357 см

Lпл/Bпл=36,357/47=0,7

Геометрически Lпл=49,5+12+12=73,5

Толщину опорной плиты tпл определяют из условия ее прочности при работе на изгиб, как пластины, нагруженной равномерной нагрузкой – отпором фундамента. Сечением колонны, траверсами и ребрами жесткости плита в плане разбита на участки. Есть участки, опертые по четырем сторонам, по трем, по двум и консольные. В каждой пластинке вычисляется изгибающий момент как в балке:

М4 = α*σб*а²

М3 = β*σб*а1²

М1 = σб*с²/2

где α и β – коэффициенты, определяемые по таблицам Галеркина (3, табл 6.8, 6.9)

σб = N/(Lпл*Bпл) – напряжение в бетоне фундамента под плитой

а, а1 и с – размеры пластинок.

σб =1743/(73,5*36)=0,658 кН/см²

α=0.048

β=0.060

а=14,22 см

а1=30 см

c=6 см

М4 = 0,081*0,6587*14,22²=0,6

М3 = 0.06*0,6587*30²=35,57

М1 = 0,6587*6²/2=11,856

По максимальному моменту из М1 М4


tпл > √6*Ммах/(Ry*γc)

Толщина плиты

tпл =√6*35,57/(24*1) =2,98 см

Высота траверсы базы колонны hтр:

βf = 0,7 по (1) для полуавтоматической заводской сварки

Rwf = 200МПа

γwf =1

kf =10 см

Опорная плита крепится к основанию анкерными болтами диаметром 24-36 мм.



Информация о работе «Проектирование производственного здания каркасного типа»
Раздел: Строительство
Количество знаков с пробелами: 16911
Количество таблиц: 2
Количество изображений: 6

Похожие работы

Скачать
19008
2
1

... зона, склады готовой продукции находятся в производственном здании. За III зоной замыкает территорию зона расширения, позволяющая в случае необходимости, расширить производство. Объемно-планировочное решение промышленного здания При проектировании здания рекомендуется избегать сложных конфигурации. Данное здание представляет собой цех – состоящий из одного корпуса в плане его размеры 96 х ...

Скачать
40065
0
2

... имелась возможность его трансформации и дальнейшего расширения. Все перечисленные требования в комплексе можно свести к общим принципам проектирования, которые лежат в основе создания объёмно- планировочного решения любого предприятия по техническому обслуживанию автомобилей: − учёт местных условий – региональных, климатических, ландшафтных; − соответствие планировочных решений ...

Скачать
15209
1
4

... бетона и железобетона требует всемерного облегчения конструкций и, следовательно, постоянного совершенствования методов их расчета и конструирования 1. Компоновка конструктивного решения здания Одноэтажное здание из сборного железобетона. По рекомендациям п.1.2 [10] приняты: симметричная конструктивная схема (см. рис.1.1) с равномерным распределением жесткостей конструкций и масс; ...

Скачать
65578
0
2

... разрез производственного здания и продольный разрез производственного здания. Выполним вначале поперечный разрез. В соответствии с планом, "Разрез 1-1" и будет являться поперечным разрезом производственного одноэтажного трехпролетного здания. Линия разреза пересекает второй и третий пролеты, следовательно, по большому счету это будет поперечный разрез второго и третьего пролетов нашего здания. ...

0 комментариев


Наверх