2.2 Застосування методів багатовимірного статистичного аналізу в моделюванні енергоспоживання
Одним з найбільш дієвих інструментів аналізу є кластерний аналіз. Його основне достоїнство полягає в тому, що він дозволяє об'єднувати об'єкти в однорідні за кількома показниками групи (кластери). Алгоритм його застосування складається з наступних кроків:
формування матриці «об'єкт - ознака», де в якості об'єктів можуть виступати регіони, міста і т.д., а ознаками є значимі характеристики пов'язані з енергоспоживанню;
вибір заходи схожості або міри відстані, на основі якої буде будуватися класифікація;
визначення зв'язку між об'єктами на основі побудови матриці схожості або відстаней, симетричної вихідної матриці;
виявлення груп та інтерпретація отриманих результатів.
При визначенні пріоритетних напрямків комплексного енергоспоживання регіону кластерний аналіз може використовуватися в кількох аспектах. Перша область застосування - це виявлення проблем, формування переліку регіонів з високими показниками споживання ресурсів, наявності великих родовищ, заводів, які визначають загальні витрати енергоресурсів. Другим аспектом аналізу є оцінка потенціалу та відбір регіонів, які можуть стати «локомотивами» споживання, на основі вивчення розподілу ресурсів, виробничих потужностей і т.д.
Для таких об'єктів в подальшому можуть створюватися інвестиційні проекти розвитку, що фінансуються повністю або частково за рахунок бюджетних коштів. Крім того, проведення кластерного аналізу за одним і тим же об'єктам і показниками за даними різних часових зрізів дає уявлення про динаміку розвитку регіонів, їх рух щодо сформованих груп, що надає вихідну інформацію для прогнозування.
Використання кластерного аналізу не вичерпується узагальненням великих масивів кількісних даних. Він також застосовується для зіставлення об'єктів за якісними характеристиками. У стратегічному управлінні методики багатовимірних угруповань можуть використовуватися для агрегування експертних оцінок поточного або прогнозованого рівня розвитку об'єктів та їх підсистем.
Об'єднання або метод деревовидної кластеризації використовується при формуванні кластерів несхожості або відстані між об'єктами. Ці відстані можуть визначатися в одновимірному або багатовимірному просторі. Наприклад, якщо ви повинні кластеризувати типи їжі в кафе, то можете взяти до уваги кількість калорій, що містяться в ній, ціну, суб'єктивну оцінку смаку і так далі. Найбільш прямий шлях обчислення відстаней між об'єктами в багатовимірному просторі полягає в обчисленні відстаней Евкліда.
На першому кроці, коли кожен об'єкт є окремим кластером, відстані між цими об'єктами визначаються вибраною мірою. Проте коли зв'язуються разом декілька об'єктів слід визначити відстані між кластерами.
Іншими словами, потрібне правило об'єднання або зв'язку для двох кластерів. Тут є різні можливості: наприклад, ви можете зв'язати два кластери разом, коли будь-які два об'єкти в двох кластерах ближче один до одного, ніж відповідна відстань зв'язку. Іншими словами, ви використовуєте "правило найближчого сусіда" для визначення відстані між кластерами; цей метод називається методом поодинокого зв'язку. Це правило будує "волокнисті" кластери, тобто кластери, "зчеплені разом" тільки окремими елементами, що випадково виявилися ближче за інших один до одного. Як альтернативу ви можете використовувати сусідів в кластерах, які знаходяться далі за усі інші пари об'єктів один від одного. Цей метод називається метод повного зв'язку. Існує також безліч інших методів об'єднання кластерів, подібних тим, що були досліджені.
Метод кластеризації к –середніх істотно відрізняється від таких агломеративных методів, як об'єднання (деревовидна кластеризація) і двувходове об'єднання. Припустимо, ви вже маєте гіпотези відносно числа кластерів (за спостереженнями або по змінних). Ви можете вказати системі утворити рівно три кластери так, щоб вони були настільки різні, наскільки це можливо. Це саме той тип завдань, які вирішує алгоритм методу K середніх. У загальному випадку метод K середніх будує рівно K різних кластерів, розташованих на можливо великих відстанях один від іншого.
З обчислювальної точки зору ви можете розглядати цей метод, як дисперсійний аналіз "навпаки". Програма починає з K випадково вибраних кластерів, а потім змінює приналежність об'єктів до них, щоб мінімізувати мінливість усередині кластерів, і максимізувати мінливість між кластерами. Цей спосіб аналогічний методу "дисперсійний аналіз (ANOVA) навпаки" в тому сенсі, що критерій значущості в дисперсійному аналізі порівнює міжгрупову мінливість з внутрішньогрупової при перевірці гіпотези про те, що середні в групах відрізняються один від одного. У кластеризації методом K середніх програма переміщає об'єкти (тобто спостереження) з одних груп (кластерів) в інші для того, щоб отримати найбільш значущий результат при проведенні дисперсійного аналізу.
Зазвичай, коли результати кластерного аналізу методом K середніх отримані, можна розрахувати середні для кожного кластера по кожному виміру, щоб оцінити, наскільки кластери розрізняються один від одного. У ідеалі ви повинні отримати середні, що сильно розрізняються, для більшості, якщо не для усіх вимірів, використовуваних в аналізі. Значення F -статистики, отримані для кожного виміру, є іншим індикатором того, наскільки добре відповідний вимір дискримінує кластери.
Функціонування енергетики в Україні відбувається у специфічних умовах ринкової моделі розвитку економіки. Тому застосування сучасного математичного апарату, що дозволяє визначати стан енергетичного комплексу за ступенем кризи, є необхідною ланкою в досягненні сталого розвитку як регіону, так і держави в цілому. Фактори, що впливають на стан енергетіческогот комплексу, достатньо тісно пов'язані між собою. Дослідження показують, що підхід до визначення факторів, що впливають передбачає поетапне перетворення матриці вихідних даних з результатом стиснення інформації. Це дозволяє виявити найбільш значимі властивості, що впливають на стан енергетичного комплексу в умовах використання мінімуму вихідної інформації. Надмірно великий обсяг інформації може призвести до того, що ступінь показності вибірки виявиться обернено пропорційній розмірності простору факторів, що, в кінцевому рахунку, може не тільки не поліпшити, а й навіть погіршити якість бажаного результату. Основною метою побудови моделі є підвищення адекватності оцінки стану енергетичного комплексу, що дозволяє встановити ступінь кризи в регіоні.
Для оцінки стану енергетичного комплексу регіону в якості основного методу застосований дискримінантний аналіз.
Спочатку за допомогою експертизи визначається ряд регіонів-зразків, що характеризують нормальний рівень функціонування енергетичного комплексу. До регіонів - зразків відносимо ті регіони, у яких найбільша узгодженість думок експертів (узгодженість думок оцінюємо за допомогою коефіцієнта конкордації). За даними регіонів, у яких найбільша узгодженість думок експертів, здійснюється формування двох матриць. За допомогою дискримінантного аналізу виробляємо класифікацію залишилися районів на дві групи: нормальну і анормальну. Регіони, які потрапили в анормальну групу, знову даємо на експертизу, за результатами якої поділяємо їх на дві групи: регіони з кризовою і з передкризової ситуацією.
За допомогою дискримінантного аналізу виробляємо класифікацію залишилися регіонів на дві групи з передкризової і кризовою ситуацією.
Перш ніж приступити до розгляду алгоритму аналізу дискримінанта, звернемося до його геометричної інтерпретації. На рис. 2.1. зображені об'єкти, що належать двом різній множини М1 і М2.
Рис. 2.1. Геометрична інтерпретація дискримінантних функцій та дискримінантних змінних
Адаптований алгоритм розрахунку коефіцієнтів дискримінантної функції представленої у третьому розділі дозволить поетапно стежити за виконанням розрахунків.
Кожен об'єкт характеризується в даному випадку двома змінними і . Якщо розглядати проекції об'єктів (точок) на кожну вісь, то ці множини перетинаються, тобто по кожній змінній окремо деякі об'єкти обох великих кількостей мають схожі характеристики. Щоб якнайкраще розділити дві дані множини, треба побудувати відповідну лінійну комбінацію змінних і . Для двовимірного простору це завдання зводиться до визначення нової системи координат. Причому нові осі L і З мають бути розташовані так, щоб проекції об'єктів, що належать різним множинам на вісь L, були максимально розділені. Вісь С перпендикулярна осі L і розділяє дві "хмари" точок якнайкраще, Тобто щоб множини виявилися по різні сторони від цієї прямої. При цьому вірогідність помилки класифікації має бути мінімальною. Сформульовані умови мають бути враховані при визначенні коефіцієнтів і наступною:
F(x) = +
Функція F(x) називається канонічною функцією дискримінанта, а величини і - змінними дискримінантів.
Позначимо - середнє значення j -ої ознаки у об'єктів i -ої великої кількості (класу). Тоді для множини М1 середнє значення функції буде рівне:
(x) = +;
Для множини М2 середнє значення функції рівне:
(x) = +;
Геометрична інтерпретація цих функцій - дві паралельні прямі, що проходять через центри класів як на рис.2.2.
Рис. 2.2. Центри великих кількостей, що розділяються, і константа дискримінації
Функція дискримінанта може бути як лінійною, так і нелінійною. Вибір її виду залежить від геометричного розташування класів, що розділяються, в просторі змінних дискримінантів. Для спрощення викладень надалі розглядається лінійна функція дискримінанта. Коефіцієнти функції дискримінанта визначаються так, щоб значення функцій якомога більше розрізнялися між собою, тобто щоб для двох множин (класів) було максимальним вираження:
Основними проблемами дискримінантного анализу являються, по-перше, знахедження дискримінантних змінних, по-друге, вибір виду дискримінантной функції. Існують різноманітні критерії послідовного відбіру змінних, що дозволяють отримати найкращі відмінності у множин. Також можна скористатися алгоритмом поступового дискримінантного анализу, котрий в літературі описаний дуже добре.
... . Деякі американські фірми купують устаткування для АЕС навіть в Японії! США не побудували жодного реактора за останні десять років. [48] РОЗДІЛ ІІ ГОЛОВНІ ФАКТОРИ ЕНЕРГЕТИЧНОЇ БЕЗПЕКИ США 2.1. Геополітичні плани США На початку ХХ століття коли США почали перетворюватися в одну з ведучих держав світу, ідеологи американського гегемонізму заявили про зазіхання США на панування у всьому ...
... ізації відтворювальних процесів в Україні. // Природа людини і динаміка соціально-економічних процесів: Зб. статей, вип.1,- Д.: Наука і освіта, - 1998. – С. 45. 49. Бачевська Ж. Проблеми правового регулювання інвестиційної діяльності.// Економіка, фінанси, право. - 1997. - №8. – С. 16-20. 50. Безуглий А.А. Вплив амортизаційної політики на прибуток і доходи бюджету // Фінанси України. - 2000. ...
... , підприємницьких структур різних форм власності, що зумовлює становлення місцевих бюджетів як важливого фінансового інструменту регулювання господарського і соціального життя. Важливим при оцінці ролі місцевих бюджетів у соціально-економічному розвитку регіонів є аналіз співвідношення обсягів місцевих бюджетів із загальними витратами зведеного бюджету (таблиця 31.2) Таблиця 31.2 Співвідношення ...
... Відсотки за кредити враховують можливість їхнього неповернення. Банк вимагає від компаній страхувати свої ризики, якщо це можливо. Слід відзначити, що, використовуючи різноманітні механізми фінансування, Європейський банк реконструкції та розвитку за час свого існування досяг значних результатів, особливо в країнах Центральної Європи – Польщі, Чехії, Словаччині, Угорщині, а також в прибалтійських ...
0 комментариев