3.1 Моделі аналізу регіонів України за енергоспоживанням
Для вирішення завдання аналізу використаємо інструмент багатовимірного статистичного аналізу такий як кластерний аналіз. Його основна перевага полягає в тому, що він дозволяє об'єднувати об'єкти в однорідні за декількома показниками групи (кластери). Формування матриці "об'єкт - ознака", вказаної на рис. 3.1., є одним з етапів побудови такої моделі, де об'єктами в даному випадку виступають регіони, а ознаками є значущі характеристики що відносяться до енергоспоживання.
Рис.3.1.Дані необхідні для розрахунків
Вказані змінні є показниками витрат енергоресурсів регіонами України зазначні у одиницях виміру toe, а саме: Х1 – обсяги споживання природнього газу; Х2 - обсяги споживання електроенергії; Х3 - обсяги споживання нафти та нафтопродуктів; Х4 - обсяги споживання вугілля; Х5 - обсяги споживання альтернативних джерел енергії.
При визначенні пріоритетних напрямів комплексного енергоспоживання регіону кластерний аналіз може використовуватися в декількох аспектах. Перша сфера застосування - це виявлення проблем, формування переліку регіонів з високими показниками споживання ресурсів, наявності великих родовищ, заводів, які визначають загальні витрати енергоресурсів. Другим аспектом аналізу є оцінка потенціалу і відбір регіонів, які можуть стати лідерами в ефективному енергоспоживанні, на основі вивчення розподілу ресурсів, виробничих потужностей.
Для більш повного аналізу регіонального споживання енергоресурсів необхідно використати декілька методів кластеризації починаючи з побудови дерева зазначеної на рис. 3.2.:
Рис. 3.2. Вибір метода кластеризації
Оберемо дані з рис. 3.3. та у пункті кластеру зазначимо «Cases» ,щоб створювати умови, за яких регіони увійдуть чи будуть виключені з даного кластеру.
Рис. 3.3. Вибір змінних та шляху
В результаті отримаємо наступні результати зазначені на рис. 3.4.:
Рис. 3.4. Вікно з результатами
З рисунку бачимо, що зазначена кількість змінних для проведення кластеризації дорівнює 5, евклідова відстань не стандартизована, отже можна виконувати наступний крок, а саме розрахунок цих відстаней, зазначений на рис. 3.5.:
Рис. 3.5. Матриця евклідових відстаней
Зазначені вище результати дозволяють перейти до графічного зображення результатів кластерного аналізу на рис. 3.6.:
Рис. 3.6. Графічне зображення побудови кластерів
З діаграми побудованого дерева видно, що був виконаний поділ на 3 класи, що визначає поділ регіонів на енергоємні, середні та мало споживаючі групи.
Метод Уорда зазначений на рис. 3.7. відрізняється від усіх інших методів, оскільки він використовує дисперсійний аналіз підходу до оцінки відстаней між кластерами. Коротше кажучи, цей метод намагається мінімізувати суму квадратів (SS) будь-яких двох (гіпотетичних) кластерів, які можуть бути сформовані на кожному кроці.
Рис. 3.7. Використання методу Уорда
Отримуємо таблицю евклідових відстаней зазначену на рис. 3.8.:
Рис. 3.8. Матриця евклідових відстаней
Зазначені вище результати дозволяють перейти до графічного зображення результатів кластерного аналізу на рис 3.9.:
Рис. 3.9. Графічне зображення побудови кластерів
З діаграми побудованого дерева видно, що був виконаний поділ на 3 класи, що визначає поділ регіонів на енергоємні, середні та мало споживаючі групи.
Використання методу к-середніх одного з найбільш популярних методів кластеризації зазначене на рис. 3.10. Алгоритм є модифікацією EM -алгоритму для розподілу. Він розбиває множину елементів векторного простору на заздалегідь відоме число кластерів k , як зазначено на рис. 3.11. Дія алгоритму така, що він прагне мінімізувати дисперсію на точках кожного кластера.
Рис. 3.10. Вибір метода кластеризації
Основна ідея полягає в тому, що на кожній ітерації перерозраховується центр мас для кожного кластера, отриманого на попередньому кроці, потім вектори розбиваються на кластери знову відповідно до того, який з нових центрів виявився ближче по выбраной метриці. Алгоритм завершується, коли на якійсь ітерації не відбувається зміни кластерів.
Рис. 3.11. Задання числа кластерів
В результаті отримали вікно з результатами зазначене на рис. 3.12. де видно, що попередньо було задано 3 кластери та 5 змінних:
Рис. 3.12. Вікно з результатами
Цей метод кластеризації дозволяє також отримати додаткову інформацію стосовно середніх значень по об’єктах ,які зазначені на рисунку 3.13. та евклідової відстані між центрами кластерів зазначеної на рисунку 3.14.:
Рис. 3.13. Результати середніх значень по об’єктах
Рис. 3.14. Евклідова відстань між центрами кластерів
З приведених результатів бачимо, що кластеризація виконана вірно, бо значення евклідової відстані та кластеризації суттєво відрізняються. Як видно з рис. 3.15., якість кластеризації задовольняє, окрім показників Х5 та Х2:
Рис. 3.15. Результати якості кластеризації
Графічне зображення середніх по факторам на рис. 3.16., дає змогу сказати, що кластери 2 та 3 розділені дуже тонкою гранню, а отже регіони, що потрапили до останнього повинні вдосконалити своє споживання енергоресурсів для того щоб не понести додаткові збитки. Тобто є необхідність введення додаткових іноваційних технологій та обрати шляхи оптимізації.
Рис. 3.16. Графічне зображення середніх по факторам
З рис.3.17. бачимо, що в результаті побудови моделі аналізу енергоспоживання регіони були поділені на 3 кластери ,як і було вказано вище, по 5, 7 та 14 відповідно. Це, перш за все, вказує на те що Україна має як регіони з низким рівнем споживання так і наділена дуже енергозатратними.
Рис. 3.17. Результати статистики по кластерам
На рис. 3.18. представлені більш розгорнуті результати відносно кластерів, а саме які регіони до якої групи належать з зазначенням відстаней до центрів:
Остаточні результати поділу регіонів на групи зазначені на рис. 3.19.
Рис. 3.19. Результати поділу регіонів на групи
Наступним методом, який дасть змогу охарактеризувати регіони є кластерний аналіз за допомогою карт Кохонена.
Призначень у використання карт Кохонена досить багато, одне з найвагоміших є те, що підприємства можна розбивати по рівню споживання електроенергії. Приведені в рис. 3.20. дані, є відображенням статистики енергоспоживання регіонів та міста Київ, які визначені у відповідних еквівалентах.
Для побудови моделі були використані дані споживання енергоресурсів підприємств-представників, ЖКГ та іншими споживачами енергоресурсів. Проведення досліджень з такими даними, адже вони приведені до одних одиниць виміру, що в даному випадку виступає нафтовий еквівалент.
Як і при роботі із звичайними нейромережами, операція з картами Кохонена складається з декількох послідовних етапів. Першим з них є етап знаходження складу входів. Для нормального навчання звичайної нейромережі треба вибрати таку множину входів, яка найбільш сильно впливає на вихідні (прогнозовані) значення. Якщо ми вгадали, і входи дійсно впливають на виходи, то нейромережа буде працювати і давати відмінні прогнози.
Рис. 3.20. Статистичні дані регіонального енергоспоживання
Алгоритм функціонування карт (Self Organizing Maps - SOM), що самоорганізуються, є одним з варіантів кластеризації багатовимірних векторів. Процес вибору типу обробки даних зображений і задаємо, як зображено на рис. 3.20. вхідні змінні, а також їх типи.
В процесі навчання карт Кохонена на входи також подаються дані і індикатори, вказані на рис. 3.21., але при цьому мережа підстроюється під закономірності у вхідних даних, а не під еталонне значення виходу.
Рис. 3.21. Задання вхідних змінних та їх типів
Розбиваємо вихідну множину даних на навчальне і тестове (співвідношення 90% до 10%), як на рис. 3.22. Задаємо конфігурацію сітки (шестикутна), а також кількість нейронів в мережі. Для якнайкращих результатів рекомендується, щоб кількість вічок складала до 50% від об'єму даних.
Рис. 3.22. Розбиття вихідну множину на підмножини
Налагоджуємо параметри зупинки навчання (мінімальна помилка менше 0,15, кількість епох - 1000) і задаємо фіксовану кількість кластерів, рівну трьом.
Рис. 3.23. Задання параметрів навчання карт Кохонена
Запускаємо побудову карт Кохонена і вибираємо ті карти і таблиці, на які хочемо звернути увагу, відображені на рис. 3.24. - 3.26.
Рис. 3.23. Запуск процеса побудови
Рис. 3.24. Вибір способів відображення
Рис. 3.25. Вибір відображення карт та їх настройки
Для кожного входу нейрона складається своя карта, яка розфарбовується у відповідності зі значенням відповідної нейрона. У нейронної мережі, навчаємої зі вчителем, ваги нейронів не мають фізичного сенсу і не використовуються в аналізі.
У спільному випадку вхідні приклади рівномірно розподіляються по карті. Але якщо в даних є яскраво виражені групи, то приклади розподіляються нерівномірно, утворюючи кластери, відображені на рис. 3.28.
Провівши попередні кроки, отримали карти, на яких можна побачити до якого кластера відноситься те або інше значенняпоказника.
Правило навчання, запропоноване Кохоненом, передбачає змагання з врахуванням відстані нейронів від нейрона-переможця. Це вимагає побудови матриці відстаней, зображеній на рис. 3.29.
Матриця відстаней (уніфікована матриця відстаней, U-matrix) - застосовується для візуалізації структури кластерів, отриманих в результаті навчання карти. Елементи матриці визначають відстань між ваговими коефіцієнтами нейрона і його найближчими сусідами. Велике значення говорить про те, що даний нейрон сильно відрізняється від тих, що оточують і відноситься до іншого класу.
Матриця помилок квантування, відображена на рис. 3.30. - відображує середню відстань від розташування прикладів до центру вічка. Приклад розташовується в багатовимірному просторі, де кількість вимірів дорівнює числу вхідних полів. Центр вічка - точка простору з координатами, рівними вагам нейрона. Відстань вважається як евклідова відстань. Матриця помилок квантування показує, наскільки добре вивчена нейромережа. Чим менше середня відстань до центру вічка, тим ближче до неї розташовані приклади і тим краще побудована модель.
Матриця щільності попадання, відображена на рис. 3.31. - відображає кількість прикладів, що попали у вічко.
Кластери, зображені на рис. 3.32. - відображують групи векторів, відстань між якими менше, ніж відстань до сусідніх груп. Іншими словами, всі елементи карти, що попали в область одного кольору (кластер), мають схожі ознаки.
Проекція Самсона, зображена на рис. 3.33. - матриця, що є результатом проектування багатовимірних даних на плоскість. При цьому дані, розташовані поруч у вихідній багатовимірній вибірці, будуть розташовані поруч і на плоскості.
За допомогою карт Кохонена підприємства були розбиті по рівню споживання електроенергії. Розділення можна вважати досить хорошим, оскільки при максимальній помилці 0,15 рівнів розпізнавання в тестовій і перевірочній множині 99,11 і 91,67% відповідно.
Рис. 3.34. Відображення значень аналізу
Результати даної роботи, вказані на рис. 3.34, можуть бути використані для оцінки енергоспоживання регіонами України при заданому наборі показників.
Недоліком є те, що в моделі враховані лише кількісні ознаки. А вони не можуть повною мірою описати енергоспоживання регіонів України, адже існує безліч якісних які і можуть дати бів полне уявлення про стан енергоспоживання.
Як висновок можна сказати, що сформована класифікація регіонів за основними характеристиками і складовими елементами енергоефективності, що дозволяє провести диференціацію регіонів по наявності і ефективності використання енергетичних ресурсів.
Аналізуючи регіони за основними характеристиками, що формують енергоспоживання, треба зауважити, що існують системи з надлишком або нестачею енергоресурсів, інфраструктури їх генерації і передачі, а також здатності споживачів сплатити їх, способу дослідження початкових матеріальних (паливних і інших) ресурсів.
Як видно з таблиці усі регіони були розподілені по групах, що дає змогу проводити подальші аналізи відносно доцільності введення додаткових заходів типу нових енергозберігаючих програм та технологій.
Рис. 3.36. Порівняння результатів кластеризації
На рис. 3.36. видно, що у результаті проведення розбиття на групи по енергоспоживанню, обидва використані методи розподілили регіони майже однаково. Неспівпадання викликане лише тим, що деякі регіони знаходяться по показникам дуже близько один від одного, а отже межи як такої майже немає. Існує необхідність в остаточному поділі на класи і дослідивши становище в Україні взагалом у сфері енергетики, пропоную віднести всі неспівпадаючі значення до груп з більшим енергоспоживанням, адже так у підприємств та інших користувачів буде мотивація на знаження потреб за рахунок пошуку нових шляхів.
... . Деякі американські фірми купують устаткування для АЕС навіть в Японії! США не побудували жодного реактора за останні десять років. [48] РОЗДІЛ ІІ ГОЛОВНІ ФАКТОРИ ЕНЕРГЕТИЧНОЇ БЕЗПЕКИ США 2.1. Геополітичні плани США На початку ХХ століття коли США почали перетворюватися в одну з ведучих держав світу, ідеологи американського гегемонізму заявили про зазіхання США на панування у всьому ...
... ізації відтворювальних процесів в Україні. // Природа людини і динаміка соціально-економічних процесів: Зб. статей, вип.1,- Д.: Наука і освіта, - 1998. – С. 45. 49. Бачевська Ж. Проблеми правового регулювання інвестиційної діяльності.// Економіка, фінанси, право. - 1997. - №8. – С. 16-20. 50. Безуглий А.А. Вплив амортизаційної політики на прибуток і доходи бюджету // Фінанси України. - 2000. ...
... , підприємницьких структур різних форм власності, що зумовлює становлення місцевих бюджетів як важливого фінансового інструменту регулювання господарського і соціального життя. Важливим при оцінці ролі місцевих бюджетів у соціально-економічному розвитку регіонів є аналіз співвідношення обсягів місцевих бюджетів із загальними витратами зведеного бюджету (таблиця 31.2) Таблиця 31.2 Співвідношення ...
... Відсотки за кредити враховують можливість їхнього неповернення. Банк вимагає від компаній страхувати свої ризики, якщо це можливо. Слід відзначити, що, використовуючи різноманітні механізми фінансування, Європейський банк реконструкції та розвитку за час свого існування досяг значних результатів, особливо в країнах Центральної Європи – Польщі, Чехії, Словаччині, Угорщині, а також в прибалтійських ...
0 комментариев