Реферат

«Конечные разности. Погрешности»


1. Погрешности

1.1 Действительные и конечно-разрядные числа

Представление действительных чисел в вычислительных машинах с фиксированной разрядной сеткой влечет появление инструментальной погрешности в обрабатываемых числах и результатах арифметических действий.

Принятое при вводе преобразование исходных действительных чисел в нормализованную экспоненциальную форму и размещение их в ограниченной разрядной сетке ЭВМ с порядком и дробной частью (мантиссой) в общем случае вносит в этот операнд относительную инструментальную погрешность, величина которой не превышает

где n – число значащих дробных двоичных разрядов, отведенных для хранения мантиссы.

Приближенное конечно-разрядное число a – это действительное число, занимающее заданное количество разрядов и округленное до числа с ближайшим значением достоверного младшего разряда. Приближенные действительные числа имеют абсолютную  и относительную  погрешности. Эти погрешности при анализе распространения ошибки при вычислениях приписываются к приближенному числу результата и связываются между собой следующим образом:


Если число a = 5,3812 имеет все разряды достоверные, то его абсолютная погрешность принимается равной половине единицы младшего разряда, т.е. =0.00005, а относительная погрешность, округляемая обычно до одного-двух значащих достоверных разрядов, будет

Всякие арифметические операции с операндами, представленными в системе с плавающей точкой, в общем случае вносят в результат аналогичную относительную инструментальную погрешность:

где fl(•) – указание на арифметику с плавающей точкой,

 – арифметическая операция из множества .

Значение результата, равное нулю принудительно устанавливается в машинах при операциях умножения с двумя операндами, приводящее к исчезновению порядка (отрицательный порядок по модулю не умещается на отведенном для него количестве разрядов).

Несколько иначе обстоит дело при вычитании чисел с плавающей точкой и одинаковым порядком:

,

.


Из последнего можно заключить, что для операции вычитания относительная погрешность численно определяется количеством значащих разрядов в результате, которое из-за выполнения нормализации не может быть меньше . Т.е. погрешность приближается к 100% последовательно. Это предупреждение адресуется составителям вычислительных алгоритмов, которым необходимо выискивать эквивалентные формулы с контролем величины операндов, в определенных ситуациях можно использовать программный переход к вычислениям с удвоенной точностью.

При выполнении аддитивных операций с приближенными операндами погрешность результата равна сумме абсолютных погрешностей всех чисел, участвовавших в операции. Выполнение мультипликативных операций вносит в результат относительную погрешность, равную сумме относительных погрешностей каждого из операндов.

1.2 Погрешность алгоритмов

Инструментальные погрешности арифметических машинных команд из-за различия и непредсказуемости величины ошибки результата нарушают дистрибутивный, ассоциативный и коммутативный законы арифметики. Каждый же программист, составляя программу, уже на уровне интуиции пользуется ими, как незыблемыми. Отсюда различие в точности тех или иных вычислительных алгоритмов и трудно уловимые ошибки.

Проследить накопление вычислительной погрешности алгоритма для операндов, которые имеют производные, удобно, если результат r каждой двуместной арифметической операции умножать на множитель  с последующим разложением результирующей функции алгоритма по степеням этого множителя или этих множителей, если  в группах операторов отличаются по величине. Например, для алгоритма вычисления значения полинома  третьей степени по схеме Горнера с псевдокодом:


P:=0; j:=3;

repeat

S:=a[j]*x+a [j-1];

P:=P+S*x;

j:=j-1;

until j=1;

функция алгоритма будет:

Учитывая, что , последнее выражение дает возможность после раскрытия скобок выделить из суммы и оценить сначала абсолютную погрешность, а по абсолютной погрешности – относительную:

Условные арифметические операторы с проверкой равенства операндов необходимо заменять проверкой вида: .




Информация о работе «Конечные разности. Погрешности»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 10891
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
11211
2
7

... - - - 0 - - - 1 - - - В таблице жирным шрифтом выделены конечные разности от нулевого порядка и выше, которые входят в интерполяционную формулу Ньютона. 4.2 Рекуррентные формулы Адамса Пусть теперь требуется найти решение уравнения . для которого уже каким-либо способом найдены k+1 значений решения , что, естественно, определяет и ...

Скачать
5519
0
12

... неизвестных и матрица этой системы является трехдиагональной. Преобразуем уравнения (2.28): . (2.30) Введя обозначения получим , (i=0, 1,..., n-2). (2.31) Краевые условия по-прежнему запишем в виде . (2.32) Метод прогонки состоит в следующем. Разрешим уравнение (2.31) относительно : . (2.33) Предположим, что с помощью полной системы (2.31) из уравнения исключен член ...

Скачать
33577
0
0

... с помощью рекурентных соотношений? 104) Приведите конечно-разностные выражения для первой производной. 105) Подынтегральная функция y = f(x) задана таблицейВзяв h = 0,3, вычислить интеграл  на отрезке [0,3; 0,9] методом Симпсона. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЧИСЛЕННЫЕ МЕТОДЫ Билет № 22 106) Как ...

Скачать
206582
2
63

... калькуляции представлены в табл.4.2. Ленточный график работ   5. Безопасность жизнедеятельности и охрана труда Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа. В ходе ее выполнения были проведены необходимые расчеты и сделаны выводы, которые могут послужить материалом для ...

0 комментариев


Наверх