2. Конечные разности

2.1 Определение конечных разностей

Конечная разность «вперед» для таблично заданной функции в i-той точке определяется выражением: , где функция  задана, как функция целочисленного аргумента с единичным шагом по аргументу i.

Для аналитически заданной и протабулированной с постоянным шагом h функции  определяющее соотношение имеет вид:

.

Преобразование таблицы функции  в функцию целочисленного аргумента  осуществляют при помощи линейного соотношения между аргументами x и i: .

Коэффициенты a и b находят из системы уравнений, получаемой в результате подстановки в пределах заданной таблицы вместо x и i сначала начальных значений аргументов , а затем конечных . При этом начало таблицы удобно совместить с началом координат функции с целочисленным аргументом(). Тогда для таблицы с (n+1) – й строками:

,

Повторные конечные разности n-го порядка в i-той точке для табличной функции  определяются соотношением


.

2.2 Конечно-разностные операторы

Линейность конечно-разностного оператора  позволяет ввести конечно-разностный оператор сдвига  и многочлены от оператора  с целыми коэффициентами, такие, как , где  должно рассматриваться как оператор повторной разности k-того порядка.

Действие любого многочлена  на функцию g(i) определяется как

.

Применение оператора сдвига к g(i) преобразует последнее в g (i+1):

g (i+1) = E g(i) = (1+) g(i)= g(i) + g(i).

Повторное применение оператора сдвига позволяет выразить (i+n) – е значение ординаты функции g через конечные разности различных порядков:

где  – число сочетаний из n элементов по k;

 – многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n .

В силу линейности оператора сдвига можно конечно-разностный оператор выразить, как , и определить повторные конечные разности через многочлены от операторов сдвига так .

Последнее позволяет формульно выражать n-ную повторную разность через (n+1) ординату табличной функции, начиная с i-той строки:

Если в выражении для g (i+n) положить i=0 и вместо  подставить их факториальные представления, то после несложных преобразований получится разложение функции целочисленного аргумента по многочленам , которые в литературе называют факториальными:

.

Можно поставить задачу разложения и функции действительной переменной f(x) по многочленам  относительно начала координат (аналогично ряду Маклорена), т.е. . Если последовательно находить конечные разности от левой и правой частей, то, зная, что  и , после подстановки x=0 будем получать выражения для коэффициентов разложения . У многочленов k-той степени, , поэтому

.


Такое разложение табличной функции f(x) в литературе называют интерполяционным многочленом Ньютона для равных интервалов.


Информация о работе «Конечные разности. Погрешности»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 10891
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
11211
2
7

... - - - 0 - - - 1 - - - В таблице жирным шрифтом выделены конечные разности от нулевого порядка и выше, которые входят в интерполяционную формулу Ньютона. 4.2 Рекуррентные формулы Адамса Пусть теперь требуется найти решение уравнения . для которого уже каким-либо способом найдены k+1 значений решения , что, естественно, определяет и ...

Скачать
5519
0
12

... неизвестных и матрица этой системы является трехдиагональной. Преобразуем уравнения (2.28): . (2.30) Введя обозначения получим , (i=0, 1,..., n-2). (2.31) Краевые условия по-прежнему запишем в виде . (2.32) Метод прогонки состоит в следующем. Разрешим уравнение (2.31) относительно : . (2.33) Предположим, что с помощью полной системы (2.31) из уравнения исключен член ...

Скачать
33577
0
0

... с помощью рекурентных соотношений? 104) Приведите конечно-разностные выражения для первой производной. 105) Подынтегральная функция y = f(x) задана таблицейВзяв h = 0,3, вычислить интеграл  на отрезке [0,3; 0,9] методом Симпсона. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЧИСЛЕННЫЕ МЕТОДЫ Билет № 22 106) Как ...

Скачать
206582
2
63

... калькуляции представлены в табл.4.2. Ленточный график работ   5. Безопасность жизнедеятельности и охрана труда Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа. В ходе ее выполнения были проведены необходимые расчеты и сделаны выводы, которые могут послужить материалом для ...

0 комментариев


Наверх