Каркасные структуры

44129
знаков
0
таблиц
3
изображения

5.  Каркасные структуры

Рассмотрим строение ортосиликата натрия. Его формула 2Na2O ´ SiO2. Данный ортосиликат относится к первой группе. В нем тетраэдры [SiO4]4 – соединены между собой ионами натрия.

Представителями силикатов третьей группы являются пироксены с формулой LiAl[Si2O6]. В них один атом кремния из трех заместился на атом алюминия. Пироксены образуют бесконечные цепочки разного строения (рис.3). Строение цепочки определяет свойства пироксена.

Области применения соединений кремния

Соли кремниевых кислот чрезвычайно распространены в природе в виде руд и минералов. Важнейшими силикатами являются алюмосиликаты, на долю которых приходится более половины массы земной коры. Природные силикаты исчисляются многими сотнями представителей. К ним относят кварц, граниты, полевые шпаты, кристаллические сланцы (слюды), асбест.

Кварц – пьезоэлектрик. Где только не находит техническое применение кристалл кварца в виде пластинки! Например, кварцевые часы высокой точности служат для «хранения» точного времени, определяемого астрономическими методами. Точность суточного хода кварцевых часов ±0,001 с. Основной деталью пьезо-кварцевых стабилизаторов длины радиоволн (частоты), преобразователей давления в электрическую величину с точностью ±1,5%, преобразователей электрической энергии в звуковую (громкоговорители и др.) и механическую (микрофоны, шумопеленгаторы, ультразвуковая механика) является пластинка из кварца.

Характерная особенность кварцевого стекла – высокая термическая устойчивость. Такое стекло можно сильно нагреть и сейчас же охладить в холодной воде. Это объясняется тем, что у кварцевого стекла коэффициент объемного расширения в 25 раз меньше, чем у обычного стекла. Кварцевое стекло прозрачно как для видимого света, так и для ультрафиолетового. Поэтому из кварцевого стекла изготавливают баллоны кварцевых ламп – источника ультрафиолетовых лучей. Специальные медицинские кварцевые лампы применяют для облучения ультрафиолетовыми лучами для профилактики гриппа, лечения рахита и других заболеваний.

Граниты – одна из самых распространенных пород в земной коре – прекрасный строительный и облицовочный материал. Незаменим гранит и для монументальной скульптуры. Отполированный до зеркального блеска, он создает неповторимую игру вкраплений, а необработанная, шершавая поверхность создает особую выразительность, поглощая свет.

Полевые шпаты – сырье для керамической, фарфоровой, стекольной, цементной и других отраслей промышленности. В строительстве их применяют в качестве поделочных материалов. Кристаллические сланцы (слюды) обладают высокой термостойкостью и высокими электроизоляционными свойствами и находят применение в электротехнике, радиотехнике. Они также используются как звуко- и теплоизоляционные материалы. Асбест – минерал с волокнистой структурой – теплоизоляционный и огнеупорный материал. Широкое применение находят слоистые минералы – слюды, тальк, каолинит. Драгоценные и полудрагоценные камни – изумруд, топаз, аквамарин – хорошо образованные кристаллы природных силикатов, окрашенные различными оксидами.

Искусственные силикаты также играют важную роль в жизни человека. Знакомство человека со стеклом – первым искусственным силикатом – произошло за 3500 лет до н. э.

Основной состав оконного стекла Na2´CaO´6SiO2. Од­нако частичная замена натрия, кальция или крем­ния на другие элементы позволяет получать разнооб­разные сорта стекла. Кварцевое, хрустальное, бутылоч­ное, посудное, электроламповое, зеркальное, пористое (пеностекло), защитное, архитектурно-строительное, све­тотехническое, стекло для световодов и стеклосфер, оп­тическое, лабораторное – вот далеко не полный их перечень. Вводя внутрь стеклянного листа металлическую сетку, получают армированное стекло. Трехслойное стекло (триплекс) изготавливают склейкой листа пленки с двумя листами стекла.

Издавна человек научился применять химические соединения для окрашивания стекла. В древности было известно, что стекло в зависимости от примесей может иметь различный цвет: синий (от оксида кобальта СоО), зеленый (от оксида хрома Сг2O3 или оксида меди СuО), фиолетовый (от оксида марганца Мn2O3), розовый (от селена). Применялись и «глушители» (соединения фосфора, мышьяка, сурьмы), придававшие стеклу матовую белизну. Молочное стекло, например, получали, добавляя в стеклянную массу касситерит (оксид олова). Рецепты соединений, интенсивно окрашивающих стекло, сохранялись в строжайшей тайне и передавались по наследству из поколения в поколение.

Цветные стекла не утратили своего значения и в наши дни. Рецептура получения цветных стекол непрерывно расширяется.

В начале XX в. стали применяться соединения селена, которые окрашивают стекло в красные, розовые и оранжевые тона. После внедрения в 30-х гг. оксидов редкоземельных элементов в промышленности палитра художественного стекла значительно расширилась – была получена недостижимая ранее полутоновая окраска всех цветов спектра.

При фотографических работах требуется красное освещение, поэтому применяют стекла, содержащие ничтожное количество мелкодисперсного золота. При медленном охлаждении стекла, мельчайшие частицы золота равномерно распределяются по всей массе расплава. Вкрапленные частицы неразличимы даже в микроскоп, но окрашивают стекло в интенсивно красный цвет. Такое стекло носит название рубинового. Из рубинового стекла сделаны пятиконечные звезды Кремля. Площадь остекления каждой звезды составляет около 6 м2. Интересно отметить, что поверхность звезды состоит из трех слоев: стекла: рубинового, хрустального и молочно-белого. Верхний слой – рубиновое стекло разных оттенков. Это позволяет оттенить лучистую форму звезд. Внутренний слой – молочно-белое стекло. В дневное время красное стекло, освещенное снаружи, а не на просвет, кажется почти черным. Прослойка молочного стекла отражает большую часть дневного света, смягчая темноту рубинового стекла. Кроме того, молочно-белое стекло хорошо рассеивает свет ламп накаливания, размещенных внутри звезды. Промежуточный слой – хрустальное стекло – придает остеклению прочность. Ведь на высоте башен Московского Кремля очень сложные атмосферные условия: град, ураганный ветер и т. д.

Введение в стекло оксида алюминия А12О3 вместо оксида кремния (IV) придает стеклу повышенную механическую прочность. Из такого стекла изготавливают специальные бутылки для насыщенных углекислым газом напитков (шипучих). Они могут выдерживать давление до 2´106-3´106 Па. В 1926-1928 гг. при разработке промышленного способа получения синтетического каучука советский химик С.В.Лебедев исследовал реакцию полимеризации бутадиена СН2 = СН—СН = СН2 под давлением. В эти годы в Советском Союзе ощущалась нехватка в химическом лабораторном оборудовании. В качестве реактора С.В.Лебедев использовал бутылки из-под шампанских вин.

Стекла, защищающие от инфракрасных, ультрафиолетовых и чрезмерно ярких видимых лучей, получают, вводя различные красители. Такие стекла применяют как защитные приспособления при сварочных работах, в металлургии и пр. В некоторых случаях ставится противоположная задача – надо не поглощать, а, наоборот, хорошо пропускать те или иные лучи. С этой целью применяются увиолевые стекла. Они свободно пропускают ультрафиолетовые лучи, которые поглощаются обычными стеклами. Такими стеклами остекляют окна больниц, санаториев, оранжерей. Из них изготавливают лабораторное оборудование. Для получения увиолевого стекла используют известково-натриевые составы. Оксидов железа в стекле должно быть не более 0,01%.

Специальные стекла, устойчивые к различного рода радиоактивным излучениям и потокам медленных нейтронов, получают, вводя в их состав элементы с высоким порядковым номером – свинец, висмут, вольфрам и др. Стекло, в котором практически отсутствует отражение (невидимое стекло), создали польские специалисты из г. Зелена Гура. Такие стекла необходимы как в науке и технике, так и в быту. Например, световые блики и отражения часто мешают прочесть надпись за стеклом шкалы прибора, рассмотреть картину и т. д.

Много затрачено сил, времени и средств учеными всего мира для создания световодов – стеклянного волокна высокой прозрачности, отражающего лучи света от внутренней поверхности. Луч света, проходя по такому волокну, не выходит за его пределы и может быть использован для передачи информации. На основе оптического волокна выпускаются детали приборов для радиоэлектронной, приборостроительной и других отраслей промышленности. Трудно оценить перспективу использования световодов. Световой жгут для телефонной связи обеспечит 2000 телефонных переговоров одновременно. Можно транслировать одновременно две цветные телепередачи. С помощью световодов стало возможным проводить ранее недоступные медицинские исследования внутренних поверхностей органов, моделировать нервную систему высших животных и человека. Из стекловодов делают «иглы», используемые для световых микроуколов ядра живой клетки.

Весьма перспективны работы по применению волоконной оптики в электронно-вычислительных устройствах. Их назвали ОВМ (оптические вычислительные машины) в отличие от обычных ЭВМ. Благодаря им появилась возможность введения в ОВМ прямой информации – речи, изображения, текста и пр.

Кремнийорганические соединения

Химия кремнийорганических соединений представляет собой большой раздел современной науки. К числу важнейших химических продуктов, необходимых для народного хозяйства (смазки, смолы, лаки, каучуки и т. д.), относятся мономерные и полимерные кремнийорганические соединения. Первое кремнийорганическое соединение было получено в 1845 г. французским химиком Ж. Эбельменом. Взаимодействием тетрахлорида кремния и этилового спирта он получил этиловый эфир ортокремниевой кислоты (тетраэтоксисилан, этилсиликат Si(ОС2Н5)4). Далее были получены четырехзамещенные органические соединения кремния с общей формулой SiR4 и другие соединения.

Подпись:   |       |
– Si – O – Si – O –
  |       |
Рис.4 Силоксановые связи

 
Среди ученых господствовало представление о полном сходстве соединений кремния и углерода. Считалось, что замена атомов углерода в органических соединениях атомами кремния не приводит к существенному изменению свойств органических соединений кремния. В этот период Д.И. Менделеев опубликовал несколько работ по химии кремния и кремнийорганических соединений. Его диссертация на звание приват-доцента, не утратившая своей ценности до настоящего времени, называлась «О строении кремнеземистых соединений» (1856 г.). Д.И. Менделеев первым из химиков показал, что кремний в отличие от углерода способен образовывать с кислородом продукты полимерной структуры (рис.4). Такие полимеры содержат в своем составе чередующиеся связи кремний — кислород (силоксановые связи).

Д.И. Менделеев заложил основы химии кремнийорганических соединений. Он детально изучил открытую ранее Ж. Эбельменом реакцию образования тетраэтоксисилана, установил правильное строение этого соединения и четырехвалентность кремния, а также определил ряд физических констант. Уделяя большое внимание химии кремнийорганических соединений. Взглядов Д.И. Менделеева на строение кислородных соединений кремния придерживались А.М. Бутлеров, Н.А.Меншуткин и другие русские химики. За рубежом работы Д.И. Менделеева этого периода были или неизвестны, или непоняты.

В истории развития химии кремнийорганических соединений ведущая роль принадлежит нашей отечественной науке. Началом современного развития химии высокомолекулярных кремнийорганических соединений является разработка академиком К.А. Андрияновым с сотрудниками способа синтеза кремнийорганических смол (1937 г.) и освоение промышленного производства кремнийорганических полимеров. Сразу резко возрос интерес к элементоорганическим соединениям этого класса. В настоящее время синтезировано несколько тысяч кремнийорганических соединений, изучены их физико-химические свойства, методы синтеза и области их практического применения.

Все кремнийорганические соединения условно разделены на две большие группы - низкомолекулярные и высокомолекулярные соединения. Из них практическое значение получили не кремнийорганические соединения c цепями кремний – кремний (силаны), а соединения, содержащие цепи кремний — кислород (силоксаны). Чем объяснить преимущества кремнийорганических соединений, содержащих силоксановые цепи?

Связь кремния с кремнием в кремнийорганических соединениях термически неустойчива. Нагревание соединений, содержащих эту связь, до 200-250 °С приводит к их полному разложению. Силоксановая связь отличается высокой термической стойкостью. В зависимости от состава и строения кремнийорганических соединений их термическая стабильность находится в пределах 300-500 °С. В химическом отношении связь кремний — кислород значительно устойчивее связи кремний — кремний. Она разрушается только при взаимодействии с фтором, серной кислотой и крепкими щелочами при нагревании.

Кремнийорганические мономерные соединения являются важнейшими полупродуктами для синтеза кремнийорганических полимеров. Исходным доступным сырьем для получения кремнийорганических мономерных соединений являются кремний, кремнезем, кокс, хлор, хлороводород и т. д. Наибольшее распространение получили методы получения кремнийорганических мономеров из кремнезема через тетрахлорид кремния и из кремнезема через элементарный кремний. Структура кремнийорганических полимеров аналогична структуре кварца и силикатов, они также обладают большой термической стойкостью. Разница в структурах – наличие органических радикалов у кремнийоргакических полимеров, которые придают высокую эластичность молекуле полимера. Оксид кремния (IV) и силикаты также имеют полимерное строение.

Кремнийорганические мономеры в основном используют для получения полимеров, но они находят также и самостоятельное применение. Из них основное промышленное значение имеет этиловый эфир ортокремниевой кислоты Si(OC2H5)4 (этил-силикат) – связующее вещество при получении цементов, керамики, красящих веществ. После пропитки этилсиликатом тканей, кож, ваты, бумаги, дерева, асбеста, гипса, бетона и т. д. эти материалы становятся водонепроницаемыми и менее горючими. Этилсиликат применяют также для приготовления специальных клеев. Этиловый эфир ортокремниевой кислоты используют для получения жаростойких литейных форм в производстве точного литья.

Кремнийорганические жидкости могут быть получены с широким диапазоном температур кипения и вязкости. Их вязкость очень мало изменяется в интервале температур от –70 до +250 °С.

Температура замерзания большинства кремнийорганических жидкостей около –70 °С (иногда –130 °С и ниже), в то время как у нефтяных масел с той же температурой кипения она составляет от –20 до –40 °С.

Полиорганосилоксановые жидкости термически стабильны. Они не изменяют цвета и практически не окисляются кислородом воздуха при длительном нагревании до 200 °С. В атмосфере инертных газов, а также на воздухе в присутствии ингибиторов они устойчивы и при более высоких температурах.

Кремнийорганические смолы – бесцветные или от желтого до коричневого цвета продукты. Они хорошо растворимы во многих органических растворителях, и их растворы используются как лаки. Кремнийорганические смолы обладают исключительно высокой термической устойчивостью и стойкостью к окислению.

Ранее использовали различные способы повышения водостойкости материалов путем нанесения на их поверхность защитных покрытий или пропиток. Однако подавляющее большинство предложенных составов имели существенные недостатки: одни изменяли внешний вид обрабатываемой поверхности, другие ухудшали физико-химические и механические свойства обрабатываемого материала или значительно увеличивали его массу; пористые материалы становились воздухонепроницаемыми и т. д.

В настоящее время найдена лишенная этих недостатков возможность повышения водостойкости материалов, заключающаяся в обработке последних различными кремнийорганическими соединениями. Обработанные кремнийорганическими соединениями материалы не смачиваются ни водой, ни водными растворами. Пористые материалы после обработки кремнийорганическнми соединениями перестают впитывать в себя воду, а их воздухопроницаемость при этом практически не изменяется. Такое действие кремнийорганических соединений обусловлено появлением на поверхности обработанного материала тончайшей полимерной пленки толщиной 3´10 –6  см.

Водоотталкивающие свойства можно придать бумаге введением кремннйорганической жидкости непосредственно в бумажную массу перед изготовлением из нее бумаги (проклейка бумаги). Такая бумага удерживает на поверхности чернильные штрихи без пропускания чернил на оборотную сторону и без растекания их по ее поверхности. Текстильные ткани, пропитанные кремнийорганическими жидкостями, становятся непромокаемыми, к ним не пристают чернила и другие жидкости. Вода на поверхности такой ткани собирается в виде шариков и стекает с нее. Даже струя воды не смачивает обработанную кремнийорганикой ткань.

Широко применяют кремнийорганические жидкости в качестве смазок самого различного назначения. Они обеспечивают длительную работу машин и механизмов как при низкой (до –70°С), так и при высокой (до +260 °C) температуре. Замечательной особенностью кремнийорганических соединений – масел – является постоянство вязкости в широком интервале температур. Испытания кремнийорганических жидкостей на подопытных животных, а затем и на людях показали, что они безвредны. Поэтому кремнийорганические жидкости стали использовать для приготовления кремов, мазей и других косметических препаратов. В литературе имеются указания на возможность использования кремнийорганических жидкостей в качестве растворителей, лекарств, применяемых для внутримышечного вливания, и в качестве среды для стерилизации хирургических инструментов. В последнем случае инструмент во время стерилизации одновременно и смазывается.

Интенсивно расширяется сфера применения кремнийорганических смол, лаков и каучуков. Высокая теплостойкость кремнийорганических смол, устойчивость к действию влаги, кислорода, озона, солнечного света, а также высокие защитные свойства и диэлектрические характеристики кремнийорганических лаковых пленок обеспечили их широкое применение в хозяйстве. Из каучуков специального назначения большой интерес представляют кремнийорганические каучуки, ставшие незаменимыми во многих областях современной техники. Характерными свойствами, выгодно отличающими полиоргано-силоксановые каучуки от углеводородных, являются термо- и морозостойкость, высокие изоляционные и диэлектрические свойства, химическая стойкость и многие другие.

Кремнийорганические каучуки нашли также применение в качестве термостойких клеев для склеивания стекла, стали, алюминия, латуни и т. п., а также для склеивания каучуков и резин друг с другом. Синтетический кремнийорганический клей при сборке крупных металлических сооружений заменяет заклепки, позволяет обходиться без сварки деталей. В городе Брно (Чехословакия) построен мост, детали которого скреплены с помощью этого клея. В настоящее время разработаны новые виды кремнийорганических каучуков с бензомаслостойкостью, сохраняющие эти свойства как при низких, так и при высоких температурах.

В человеческом организме кремний содержится повсеместно, но больше всего – в костях, коже, соединительной ткани, а также в некоторых железах. При переломах костей содержание кремния в месте перелома повышается почти в 50 раз. Минеральные воды с высоким содержанием кремния оказывают благотворное влияние на здоровье людей, особенно пожилых. С возрастом содержание кремния в организме существенно уменьшается, поэтому у пожилых людей медленнее срастаются сломанные кости.

Но, с другой стороны, давно известно серьезное заболевание – силикоз, вызываемое длительным вдыханием пыли, содержащей свободную двуокись кремния. Некоторые кремнийорганические соединения оказались токсичными для всех теплокровных организмов.

Кремниевая жизнь

Еще несколько лет тому назад американский профессор астрономии Том Голд высказал убеждение в том, что внутри Земли могла зародиться жизнь, основанная на кремнии и не имеющая ничего общего с привычными нам формами организмов. Научный мир отнесся к его гипотезе прохладно. А сегодня уже открыто и абсолютно доказано существование на Земле кремниевой формы жизни.

Уникальный материал, подтверждающий наличие кремниевой формы жизни на Земле, которую автор открытия назвал Крей, опубликован А.А. Боковиковым. Его открытие было изучено в Томском отделении минералогического общества РАН (ТОМО РАН) и получило положительное заключение. К докладу прилагались 24 цветные фотографии, на которых можно было видеть различные этапы развития агатов и даже «рождение» маленького агатика.

В течение семи лет А. Боковиков собирал и исследовал агаты – не мертвые камни, а, как было доказано им, живые организмы со многими признаками, свойственными белковой форме жизни, в частности:

Ø  Четко выраженная анатомия кремниевых организмов

Ø  Наличие полов

Ø  Размножение семенами и отпочкованием

Ø  Внутрикаменное развитие зародыша

Ø  Наличие кожи

Ø  Линька кожи

Ø  Регенерация кожи

Ø  Залечивание ран, трещин, сколов

Ø  Кристаллическое тело – хранилище наследственной информации

Чрезвычайно интересны наблюдения автора. Агат имеет четко выраженную анатомию: на цветных фотографиях, сделанных в ходе исследований, хорошо видно кожу, полосатое тело, кристаллическое тело. В данном случае кожей названа внешняя оболочка; полосатое тело – это мужское тело, а кристаллическое – женское. Последние - это, по утверждению автора, гены агатов. Причем наличие полов в крее определено исследователем с большой достоверностью. Так, возникновение и развитие зародышей агата происходит только в кристаллическом теле и никогда полосатом. Автор предположил, что вокруг яйцеклетки, как и других биологических структур, существует биополе. Одна из разновидностей биополя – лазерное поле, способное излучать не только свет, Нои звук. На акустические колебания клетка накладывает генетическую информацию, которая может осуществить партеногенез, т. е. половое размножение без оплодотворения яйцеклетки. Способностью звука переносить генетическую информацию объясняется и появление зародышей кремниевых организмов внутри целого и монолитного куска базальта. При повреждении поверхности агата появившиеся царапины и трещины вскоре затягиваются, сколы разравниваются, хотя от них остаются следы.

Другие исследования показали, что глины тоже обладают признаками жизни. Л. Койн из Калифорнийского университета в Сан-Хосе нашла, что каолинитовые глины могут собирать энергию, которая выделяется при радиоактивном распаде, из окружающей среды, сохранять ее и высвобождать в тех случаях, когда структура глины нарушается определенным образом, например при ее смачивании или высушивании.

Но это не все. Были обнаружены морские губки, образующие колонии на большой глубине. Их основа – кремниевые полимеры. Эти губки растут, питаются и размножаются без привычных для нас белковых структур. То, что эти организмы развивались на глубине, т. е. под давлением, и практически без света, доказывает особенность кремниевой жизни. Для других морских организмов – радиолярий, диатомей, морских звезд – диоксид кремния составляет основу скелета. Растениям кремний придает прочность, так как входит в состав механической ткани. Чем жестче стебель растения, тем больше кремния находят в его золе.

Встает вопрос: а имеет ли крей перспективу развития на Земле? Ведь существующие кремниевые формы жизни находятся на сравнительно низкой ступени эволюции, в то время как наша планета заселена развитыми белковыми существами. Я считаю, что это возможно, так как крей имеет другие состав и структуру, и, следовательно, кремниевая жизнь вообще не будет конкурировать с белковой. У них будут разные места обитания, пища. Но, возможно, крей не сможет развиваться в земных условиях, и тогда вопрос о конкурентоспособности отпадает.


Информация о работе «Кремний»
Раздел: Химия
Количество знаков с пробелами: 44129
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
11326
15
0

...  – содержание влаги в рабочей массе, - зола на сухую массу,  – содержание летучих компонентов. Электротермические агрегаты в технологии кремния Основным агрегатом для выплавки технического кремния является дуговая рудотермическая одно-трехфазная электропечь мощностью от 8 до 25 МВА. Печь представляет собой круглый стальной кожух с днищем, футерованные огнеупорной кладкой. Подина (днище) и часть ...

Скачать
71671
4
12

... примесей между твердой и жидкой фазами, близкое к 1. Таким образом, содержание легирующей примеси в кристалле практически совпадает с содержанием примеси в расплаве. 5. Метод хорошо применим для выращивания профильных монокристаллов различных веществ (сапфира, тнталата бария и магния, фторида лития, сплава медь — золото, а также различных эвтектических материалов анизотропными свойствами). ...

Скачать
56259
2
4

... опытно-промышленном масштабе кремния термическим разложением трибромсилана. Однако перспектива метода на сегодня остается неясной. В настоящее время основными химико-технологическими системами (ХТС), применяемыми всеми ведущими производителями кремния в мире являются производства, использующие трихлорсилан (78-90% всего производства кремния) и моносилан (18-20%). Разработки технологий на основе ...

Скачать
25110
3
9

... химия и др. Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе. Глава 1. Кремний и углерод - химические элементы   1.1 Общие сведения об углероде и кремнии Углерод (С) ...

0 комментариев


Наверх