Муниципальное образовательное учреждение высшего профессионального образования
Южно-Уральский профессиональный институт
Факультет управления и информационных технологий
Кафедра информатики и вычислительной техники
по дисциплине «Математическая логия и теория алгоритмов»
Студент
гр. ВМз-01-08, факультет УиИТ
____________________ М.О.Белозерова
«__»___________2009
Преподаватель
___________________ С.А. Рудаков
к.п.н. «__»___________2009
Челябинск
2009
1. Задание по логике высказываний
Ниже приведены по три клаузы в одном варианте. Каждую клаузу необходимо доказать следующими методами: резолюций и с помощью таблиц истинности.
a. А, В v С => А & В; С
b. B v С, (А -> В) -> (С -> А) => А
c. А -> (В v С), В -> (D -> А), С -> (В -> А), А -> (В -> С), D - > (A v В),
D -> (А -> В), С -> (В v D), A v С v D, С -> (А -> В) => А & В & С; А & В & D
Докажем с помощью метода резолюций истинность следующей клаузы:
a. А, В v С => А & В; С
Доказательство ее справедливости следует начать с приведения ее в нормальную конъюнктивную форму.
A, В v C, -B v -C, -A => 0
P1 P2 P3 P4
Справа от каждого нового дизъюнкта будем писать номера используемых дизъюнктов, получим:
№ п/п | Выводы | Почему |
1. | 0 | Р2, Р3 |
2. | 0 | P1, P4 |
3. | 0 | 1, 2 |
Докажем с помощью метода резолюций истинность следующей клаузы:
B v С, (А -> В) -> (С -> А) => А
Доказательство ее справедливости следует начать с приведения ее в нормальную конъюнктивную форму.
В v С, A v -B v -C, -A => 0
P1 P2 P3
Справа от каждого нового дизъюнкта будем писать номера используемых дизъюнктов, получим:
№ п/п | Выводы | Почему |
1. | А | Р1, Р2 |
2. | 0 | P3, 1 |
Докажем с помощью метода резолюций истинность следующей клаузы:
c. А -> (В v С), В -> (D -> А), С -> (В -> А), А -> (В -> С), D - > (A v В),
D -> (А -> В), С -> (В v D), A v С v D, С -> (А -> В) => А & В & С;
А & В & D
Доказательство ее справедливости следует начать с приведения ее в нормальную конъюнктивную форму.
А v В v С, -В v -D v А, -С v –В v А, -А v -В v С, -D v A v В, P1 P2 P3 P4 P5 D v -А v В,
- С v В v D, A v С v D,
-С v -А v В, -А, -В, -С v -А, -В, -D =>0 P6 P7 P8 P9 P10 P11 P12 P13 P14
Справа от каждого нового дизъюнкта будем писать номера используемых дизъюнктов, получим:
№ п/п | Выводы | Почему |
1. | C v -D | P4,P5 |
2. | A v -C | P2,P7 |
3. | B v C | P6,P8 |
4. | -A v -D | P12,1 |
5. | -C v -A | P9,P11 |
6. | -C | 2,5 |
7. | B | 3,6 |
8. | -A v -D | P10,4 |
9. | -A v -D | P14,8 |
10. | 0 | P1,P3 |
11. | 0 | P13,7 |
12. | 0 | 9,10 |
13. | 0 | 11,12 |
Докажем с помощью таблиц истинности следующую клаузу:
А, В v С => А, В v С
P1 P2 C1 C2
Докажем с помощью таблиц истинности следующую клаузу:
B v С, (А -> В) -> (С -> А) => А
P1 P2 C1
Теперь составим таблицу истинности (табл. 1.1) , в которой под Р понимается обобщенная причина, т.е. конъюнкция всех Р.
n | А | B | C | P1 | P2 | P | C1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
2 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
3 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
5 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
6 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Клауза считается ложной, т.к. единицы следствия (С1) не накрывают все единицы обобщенной причины (Р), т.е. единицы обобщенной причины не образуют подмножество единиц следствия.
Докажем с помощью таблиц истинности следующую клаузу:
А -> (В v С), В -> (D -> А), С -> (В -> А), А -> (В -> С), D - > (A v В),
P1 P2 P3 P4 P5
D -> (А -> В), С -> (В v D), A v С v D, С -> (А -> В) => А & В & С; А & В & D
Р6 Р7 Р8 Р9 С1 C2 C3 C4 C5
Теперь составим таблицу истинности (табл. 1.3) , в которой под Р понимается обобщенная причина, т.е. конъюнкция всех Р.
n | А | B | C | D | P1 | P2 | Р3 | Р4 | Р5 | P6 | P7 | P8 | P9 | P | C1 | C2 | C3 | C4 | C5 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
5 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
6 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
7 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
10 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
11 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
12 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
13 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Клауза считается истинной, т.к единицы следствия (С1) накрывают все единицы обобщенной причины (Р), т.е. единицы обобщенной причины образуют подмножество единиц следствия.
... другим. При этом предложение, истинное до замены, должно оставаться истинным и после его. Для определения через род и видовое отличие это правило формулируется, как правило, соразмеримости определяемого и определяющего понятия: совокупности предметов, охватываемые ими, должны быть одним и тем же. · Нельзя определять имя через само себя или определять его через такое другое имя, которое, ...
... изучения логики. Ступени процесса познания: чувственное познание и абстрактное мышление. Особенности абстрактного мышления, 3 его основные формы: понятие, суждение, умозаключение. Роль языка в познании. Логика как наука о законах и формах правильного мышления. Понятие логической формы. Конкретное содержание и логическая структура мысли. Понятие логического закона. Истинность мысли и правильность ...
... их произнесения или написания. В результате центр тяжести падает не на разделение темпоральных высказываний на датированные (и потому якобы определенные во времени) и не содержащие даты, а на разделение их на определенные во времени и неопределенные во времени. Определенные во времени высказывания, согласно Аристотелю, описывают либо то, что стало, либо то, что вообще не знает становления. Если ...
... применяются дополнительные правила вывода, например правило отделения конъюнкта D pÙg, р и правило присоединения дизъюнкта Dр, pÚg. 10. Применяются известные методы доказательства. Обоснование таких методов дается в учебниках логики. Например метод доказательства от противного основан на следующей теореме. Теорема о доказательстве методом от противного: если формальная теория Т2 ...
0 комментариев