Контрольная работа

по экономико-математическим методам


Задача №1

Условие задачи:

Администрация штата объявила торги на n строительных подрядов для n фирм. Ни с одной фирмой не заключается более одного контракта. По политическим соображениям чиновники администрации стремятся не заключать более N крупных контрактов с фирмами, расположенными за пределами штата. Обозначим через 1,2, …, s крупные контракты, а через 1,2,…,t - фирмы, расположенные за пределами штата. Целью является минимизация общих затрат при указанном условии. Постройте соответствующую данным условиям модель.

Решение:

Пусть х - затраты на строительство, тогда цель задачи "минимизация общих затрат" будет выражена через функцию

F = x → min

Пусть х1 - затраты на строительство при подряде местных строительных фирм, х2-затраты на строительство при подряде строительных фирм, расположенных за пределами штата.

F = n*х1+n*х2 → min

S*t ≤N

nn ≤1

х1, х2≥ 0

Задачу минимизации общих затрат на строительство можно записать как задачу математического программирования

n n t s

F =∑∑ Cij *Хij+∑∑ Cij*Yij → min

i=1 j=1 i=1 j=1

При ограничениях

Хij ≤ 1; I, j= 1, n

Yij ≤ 1; I, j= 1, n

∑ij≤ N; i=1, t; j=1s

Хij, Yij ≥0

Через Хij обозначен факт заключения администрацией штата с i - той фирмой, расположенной на территории штата, j - того контракта (подряда)

1, i - ая фирма заключила - контракт

Хij = 0, i - ая фирма не заключила - котракт

Через Yij обозначен факт заключения администрацией штата i - oй фирмой, расположенной за пределами штата, j - того контракта.

Через Cij обозначены затраты на строительство по j - тому контракту с i - ой фирмы.

Целевая функция представляет собой суммарные затраты. Первые два условия ограничивают количество заключаемых с одной строительной фирмой контрактов в количестве ≤ 1, третье условие ограничивает количество заключаемых контрактов с фирмами расположенными за пределами штата, в количестве не более N, четвертое условие очевидно исходя из условия данной задачи.


Задача № 2

Условие задачи:

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов.

Количество корма каждого вида, которые должны ежедневно получать лисицы и песцы, приведено в таблице.

В ней же указаны общее количество корма каждого вида, которое может быть использовано зверофермой, и прибыль от реализации одной шкурки лисицы и песца.

Вид корма Кол-во единиц корма, которые ежедневно должны получать лисицы Кол-во единиц корма, которые ежедневно должны получать песцы

Общее

кол-во корма

1 2 3 180
2 4 1 240
3 6 7 426
Прибыль от реализации 1 шкурки 16 12

Определить, сколько лисиц и песцов следует выращивать на звероферме, чтобы прибыль от реализации была максимальной.

Решение:

Введем переменные.

Пусть х - это количество лисиц и песцов, которое следует выращивать на ферме.

Х1 - это количество лисиц, которое следует выращивать на ферме.

Х2 - это количество песцов, которое следует выращивать на ферме.

Цель задачи: максимизация прибыли от реализации шкурок песцов и лисиц. Целевая функция:


F =16х1 + 12х2→ max

Посмотрим как будут выглядеть данные в задаче ограничения:

1+3х2≤180 - ограничения корма 1

12 ≤ 240 - ограничения корма 2

1+7х2 ≤ 426 - ограничения корма 3

х1, х2≥ 0, ? Z

После решения задачи в программе XL получены результаты:


Информация о работе «Построение экономико-математических моделей»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 5882
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
20949
19
2

... и качественные характеристики этого элемента представлены ниже в таблице 1 за временной период с мая 2005 по май 2006. Для построения экономико-математической модели применен метод математической статистики. Расчеты по модели и анализ полученных результатов при использовании данного метода включает в себя этапы: 1.Графическое представление характеристик. 2.Предварительный статистический ...

Скачать
26455
2
4

... на них, оценки тех­нико-экономических показателей и, в завершении, построения экономико-математической модели предприятия. В экономико-математической модели в целевую функцию должен вводиться тот или иной фактор неопределенности. В дальнейшем будет приведена разработка методика учета факторов неопределенности, показаны математические моде­ли снятия неопределенности. Крайне важным является оценка ...

Скачать
18372
0
1

... вопросы должны быть получены в ходе маркетинговых и проектно-изыскательских работ на фазе проектирования спортивных сооружений. И уже на этой стадии в процесс активно включаются экономико-математические методы, задействуется существующий аппарат математического моделирования и прогнозирования. Данные методы и расчеты совершенно необходимы для определения: сроков окупаемости отдельных предприятии ...

Скачать
40285
4
0

... моделей экстремальных планов и экстремальных значений целевой функции быть не может. Таким образом, для принятия оптимального решения любой экономической задачи необходимо построить ее экономико-математическую модель, по структуре включающую в себе систему ограничений, целевую функцию, критерий оптимальности и решение. Методика построения экономико-математической модели состоит в том, чтобы ...

0 комментариев


Наверх