1. Структурный анализ механизма

Представлен кривошипно-ползунный механизм.

Число степеней исследуемого механизма определим по формуле Чебышева:

 

 (1)

где n – число подвижных звеньев в составе исследуемой кинематической цепи; p4 и p5 – соответственно число пар четвертого и пятого класса.

Для определения величины коэффициента n проанализируем структурную схему механизма (рисунок 1):

Рисунок 1 – Структурная схема механизма

Структурная схема механизма состоит из четырех звеньев:

1 – кривошип,

2 – шатун АВ,

3 – ползун В,

0 – стойка,

при этом звенья 1 – 3 являются подвижными звеньями, а стойка 0 – неподвижным звеном. Она представлена в составе структурной схемы двумя шарнирно-неподвижными опорами и направляющей ползуна 3.

Следовательно, n=3.

Для определения значений коэффициентов p4 и p5 найдем все кинематические пары, входящие в состав рассматриваемой кинематической цепи. Результаты исследования заносим в таблицу 1.

Таблица 1 – Кинематические пары

Кинематическая пара (КП)

Схема кинема-

тической пары

Класс кинема-

тической пары

Степень подвиж-

ности

1 0 – 1

5

вращательная

1
2 1 – 2

5

вращательная

1
3 2 – 3

5

вращательная

1

 

4 3 – 0

5

вращательная

1

 

Из анализа данных таблицы 1 следует, что исследуемый механизм ДВС с увеличенным ходом поршня состоит из семи пар пятого класса и образует замкнутую кинематическую цепь. Следовательно, p5=4, а p4=0.

Подставив найденные значения коэффициентов n, p5 и p4 в выражение (1), получим:

 

 (1)


Для выявления структурного состава механизма разбиваем рассматриваемую схему на структурные группы Ассура.

Первая группа звеньев 0-3-2 (рисунок 2).

Рисунок 2 – Структурная группа Ассура

Данная группа состоит из двух подвижных звеньев:

шатун 2 и ползун 3;

двух поводков:

кривошип 1 и направляющая (стойка) 0;

и трех кинематических пар:

1-2 – вращательная пара пятого класса;

2-3 – вращательная пара пятого класса;

3-0 – поступательная пара пятого класса;

тогда n=2; p5=3, a p4=0.

Подставив выявленные значения коэффициентов в выражение (1),

получим:

Следовательно, группа звеньев 4-5 является структурной группой Ассура 2 класса 2 порядка 2 вида.

Вторая группа звеньев 0-1 (рисунок 3).


Рисунок 3 – Первичный механизм

Данная группа звеньев состоит из подвижного звена – кривошипа 1, стойки 0 и одной кинематической пары:

0 – 1 – вращательная пара пятого класса;

тогда n=1; p5=1, a p4=0.

Подставив найденные значения в выражение (1), получим:

Следовательно, группа звеньев 1 – 2 действительно является первичным механизмом с подвижностью 1.

Структурная формула механизма

 

МЕХАНИЗМ=ПМ(W=1) + СГА(2 класс, 2 порядок, 2 вид)


Информация о работе «Кривошипно-ползунный механизм, его структура, схема, анализ»
Раздел: Промышленность, производство
Количество знаков с пробелами: 13195
Количество таблиц: 3
Количество изображений: 9

Похожие работы

Скачать
28882
4
1

... б) с точечным формообразующим контактом 1 2 силовое 5 Плоская а) обычная б) с пальцем 3 2 Силовое Силовое и геометрическое 4. СТРУКТУРНЫЕ СВОЙСТВА МЕХАНИЗМОВ   4.1. Сложность N механизма. В металлорежущих станках сложные подвижные механические системы, передающие движе­ния от входного звена к выходному (шпиндель, суппорт и ...

Скачать
23017
2
7

... отрезка "ав". Соединив точки S2 и S4 с полюсом плана скоростей получим векторы скоростей этих точек, а величина скоростей определится из соотношений: . Построенный план скоростей для механизма компрессора позволяет определить угловые скорости звеньев 2 и 4 в их вращательном движении. Как уже говорилось, отрезок плана скоростей ав (вектор) обозначает скорость точки "В" относительно точки ...

Скачать
21064
2
0

... обеспечивающим выполнение технологического процесса сшивания материалов и входящим в число исходных данных для выполнения прочностных расчетов игл. Угол заточки иглы . Общая длина лезвия иглы от острия до колбы:   l1=L-(l2+l3) мм (1.1) L – общая длина иглы: в универсальных швейных машинах L=38 мм l2 – длина колбы, выступающая из игловодителя: в зависимости от лапки принимает- ся ...

Скачать
149120
11
29

... , , . Произведем оценку числа возможных вариантов, которые можно синтезировать на основе морфологической матрицы при наложении на нее граничных условий проектирования, а именно исключения вышеперечисленных вариантов: Для всего PC машины поточной линии прядильного производства оценка полных решений может быть проведена по следующей формуле: , где  – количество исполнительных механизмов в ...

0 комментариев


Наверх