4. Влияние легирующих элементов на свойства феррита и аустенита

Легирующие элементы, растворенные в феррите, повышают его предел прочности, твердость не изменяя существенно относительного удлинения, за исключением Mn и Si (2,5 – 3,0%) – которые сильно упрочняют феррит и снижают относительное удлинение (рис. 4).


Рисунок 4. Влияние легирующих элементов на свойства феррита:

а – твердость, б – ударная вязкость

Из рисунка 4, а:

Ni, Si, Mn – особенно сильно повышают твердость, а элементы Cr, W, Mo – значительно меньше повышают твердость (даже при больших концентрациях).

Из рисунка 4, б:

Ni, Si, Mn – при малых концентрациях (1 – 3%) повышают ударную вязкость;

Mo, Si. W – снижают ударную вязкость при всех концентрациях.

Рисунок 5. Влияние легирующих элементов на порог хладноломкости железа

Наиболее ценным легированным элементом, является Ni, т.к. он повышает прочность не снижая пластичности и ударной вязкости; снижает порог хладноломкости.

Легирующие элементы, растворяясь в г- Fе, повышают прочность аустенита при нормальной и высоких температурах. Для легированного аустенита характерен низкий предел текучести (ут) при сравнительно высоком пределе прочности (ув). Аустенит легко наклепывается, т.е. быстро и сильно упрочняется под действием деформации.

5. Карбидная фаза в легированных сталях

По отношению к углероду легирующие элементы подразделяют на две группы:

1) графитизирующие элементы: Si, Ni, Cu, Al;

2) карбидообразующие элементы:

Fе → Mn → Cr → Mo → W → Nb → V → Zr → Ti – расположены по возрастающей степени сродства к углероду и устойчивости карбидных фаз.

Элементы Fe, Mn, Cr, Mo, W – образуют сложные карбиды, которые легко растворяются в аустените.

Nb, V, Zr, Ti – образуют специальные карбиды, трудно растворимые в аустените.

При таком содержании в стали Mn, Cr, W, Mo, они растворяются в цементите, замещая часть атомов Fе и образуя легированный цемент: (Fе,М)3С, где М – легирующий элемент.

Мn может заместить в решетке цементита все атомы Fе: Fе3С → Mn3C;

Cr – до 2,5% ат (Fе,Cr)3С;

Мо – до 3% ат (Fе,Мо)3С;

W – до 0,8ч1,0% ат (Fе,W)3С, если в стали большее содержание легированного элемента, то происходит образование специальных карбидов.

При повышенном содержании Cr, W, Mo в зависимости от содержания углерода в стали могут образоваться специальные карбиды.

При содержании Cr > 2,5% образуется специальный карбид Cr7С37С3 – общий вид), часть атомов Cr может быть заменена атомами железа (Cr,Fе)7С3 (до 55% Fе).

При еще больших содержаниях Cr (> 10ч12%) образуется карбид (Cr, Fе)23С6, (М23С6) (Fе до 35%).

Возможно образование сложных карбидов:

3Мо3С в общем виде: М6С, М4С

2Мо2С

3W3С

2W2С.

Приняты следующие обозначения карбидов: М3С (карбид цементитного типа), М23С6, М7С3, М6С, М4С, МС.

Карбиды в сталях можно разделить на две группы:

1-я группа: М3С, М7С3, М2С6, М6С (М4С) – имеют сложное кристаллическое строение, легко растворяются в аустените при нагреве.

2-я группа: МС, М2С,VC, TiC, NbC, TаC, ZrC, Mo2C, W2C, WC – все это твердые растворы вычитания (недостаток углерода), имеют кубический тип решетки. При нагреве не растворяются в аустените.

Отличаются эти карбиды высокой температурой плавления, высокой твердостью. Микротвердость TiC: Нм2800 – 3200.

Интерметаллические соединения. Образуются при большом содержании легирующего элемента: Fе7Мо7, Fе7W6, Fe3Nb2, FeTi, FeCr, FeV, FeCrMo.


6. Классификация легированных сталей по структуре

 

Ферритный Перлитный Мартенситный Аустенитный Карбидный (Ледебуритный)

12Х17, 10Х23Н18

08Х13, 15Х12НВМФ

15Х25Т, 10Х17НВМ2Т

%С < 0,25%,

Cr > 10%

Конструкционные стали

25Х1МФ,

35ХГСА,

ХГС, 40Х,

5ХНМ, 70С3А,

40ХНМА, 9ХВГ,

10ХСНД,

09Г2С

л.э. < 5%

%С – любое

конструк. и инструментальные стали

40Х10С2М,

40Х13,

40Х9С2,

25Х2Н4ВА,

25Х17, 4Х5МФ1С, 3Х3М3Ф,

6ХВ2Н2ВС

%С=0,25ч0,6%

среднеуглер.

1)л.э. Сr>10%;

2) Ул.э. >5%.

медицинский инструмент, детали обладающие повышенной твердостью и прочностью

12Х18Н9Т,

45Г17Ю3А,

110Г13, 45Х14Н14В2М,

31Х19Н9МВБТ,

10Х14Г15,

20Х25Н20С2

%С – любое

1)л.э.Cr+Ni≈30%,

2) Mn > 10%

износостойкие, конструкционные, жаростойкие и др.

Р18, Р9К8

Р6М5, Р6М5K5

Р9М4К8

Стр-ра зернистый перлит. Глобулы цемента на ферритной основе.

7. Влияние легирующих элементов на механические свойства стали

При легировании особенно сильно повышается предел текучести, относительное сужение, ударная вязкость. Легирующие элементы (л.э.) уменьшают критическую скорость закалки, повышая прокаливаемость. После термической обработки (ТО) легированные стали имеют более мелкое зерно и более мелкие дисперсные структуры.

Однако высокое легирование может ухудшать обрабатываемость резанием, свариваемость, повысить порог хладноломкости.

V, Ti, Nb, Zr (до 0,05ч0,15%) – образуют труднорастворимые карбиды, измельчают зерно, понижают порог хладноломкости, снижают хрупкость, уменьшают чувствительность к концентратам напряжений.

Мо, W – повышает прокаливаемость, измельчают зерно, повышают устойчивость перед отпуском.

Si – обеспечивает высокую вязкость, замедляет процесс отпуска мартенсита.

Mn – приводит к упрочнению наклепом.

W, Mo, Cr, V – повышают красностойкость.

В – повышает износостойкость.

Mn, Cr, B, Ni, Mo – обеспечивают высокую прокаливаемость.

Cr, Mo, S – сильно упрочняют сталь, сохраняя высокую плотность дефектов; увеличивают дисперсность карбидных частиц.

Cu, Ni или одновременно Cu и Р – повышают коррозионную стойкость в атмосфере (10ХСНД, 15ХСНД).

V (0,05-0,12%) и N (0,015-0,025) – измельчают зерно (балл 10-12).

Ni – повышает сопротивление крупному разрушению, увеличивает пластичность и вязкость, понижает температуру порога хладноломкости (1% Ni – на 60-800С).


Литература

1.  Лахтин Ю.М., Леонтьева В.П. Материаловедение. М., 1972, 1980.

2.  Гуляев А.П. Металловедение. М., 1986.

3.  Антикайн П.А. Металловедение. М., 1972.


Информация о работе «Легированные стали и влияние легирующих элементов на их свойства»
Раздел: Промышленность, производство
Количество знаков с пробелами: 10758
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
21619
0
0

... совмещают с легированием. В металлургии в основном применяют следующие способы получения стали: кислородно-конвертерный, в мартеновских и двухванных печах и электротермический. Производство стали в кислородных конвертерах В производстве стали широко используют кислородно-конвертерные процессы при продувке кислородом сверху и в последние годы – при продувке через днище. Их преимуществами ...

Скачать
399022
0
36

... они брали ту самую "чистую" медь, почему соединили ее именно с оловом, а не с каким-нибудь другим металлом, в каких месторождениях встречается в природе медь, в каких именно химических соединениях, где эти месторождения расположены и насколько легко было древним людям ее вырабатывать и переплавлять? Очень странно, что кабинетные историки совершенно не утруждают себя подобными вопросами. А, ведь, ...

Скачать
31675
4
0

... Нержавеющая сталь устойчива против электрохимической коррозии, т.е коррозии, вызванной действием электролитов: кислот, щелочей, солей. КОРРОЗИОННАЯ СТОЙКОСТЬ , способность материалов сопротивляться коррозии. У металлов и сплавов определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени, либо толщиной разрушенного слоя в мм ...

Скачать
19957
0
0

и специфические свойства чугуна и стали. 3.  Сделать вывод. При написании данной работы использовалась учебная и методическая литература. 1. Характеристика материалов 1.1 Чугун Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S). Широко применяемые марки чугунов обычно содержат 2,5-4% углерода, 1-5% кремния, до 2% марганца, а ...

0 комментариев


Наверх