Расчет молниезащиты

Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов
Характеристика окружающей среды производственных помещений Определение электрических нагрузок по группам приемников электроэнергии Построение картограммы определения центра электрических нагрузок и места расположения питающих подстанций Выбор системы внешнего электроснабжения Выбор системы внутреннего электроснабжения Построение принципиальной схемы электроснабжения Составляем расчетную схему электроснабжения до электроприемников, подключенных к ШР-1. на схему наносим известные данные Все данные по выбранным автоматическим выключателям и по кабелям заносим в таблицы. Проверку элементов цеховой сети проводим в разделе 10.1 Составляется схема замещения и нумеруются точки короткого замыкания в соответствии с расчетной схемой Выбор и проверка токоведущих частей и аппаратов по токам КЗ ≥ 3,39 Составляем схему замещения (рисунок 10.1) и нумеруем точки короткого замыкания в соответствии с расчетной схемой Определяем трехфазные и двухфазные точки короткого замыкания и заносим в «Сводную ведомость» Составляется схема замещения для расчета 1-фазных токов КЗ (рисунок 10.2) и определяются сопротивления Релейная защита цехового трансформатора Защита цехового трансформатора при перегрузе Расчет молниезащиты Возникают дополнительные потери активной мощности и энергии во всех элементах системы электроснабжения, обусловленные загрузкой их Регулирование работы компенсирующих устройств Организация безопасной эксплуатации производства Организация безопасной работы на холодильной станции цеха 2510 Общие требования к заземлению электроустановок
116777
знаков
17
таблиц
4
изображения

13. Расчет молниезащиты

Молниезащита – комплекс защитных устройств и мероприятий, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружения, оборудования и материалов от возможных взрывов, загораний и разрушений, возникающих при разрядах молнии.

Насосная установка относится по устройству молниезащиты к III категории и защищается от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации.

В электрических установках защита от прямых ударов на подстанциях осуществляется вертикальными стержневыми молниеотводами, а защита линий – горизонтальными молниеотводами. Вертикальный стержневой молниеотвод представляет собой высокий столб с проложенным вдоль него стальным проводом, соединенным с заземлителем. Горизонтальный молниеотвод представляет собой провод, расположенный над фазными проводами линии на тех же опорах. Чем выше над защищаемым объектом расположен молниеотвод, тем больше его защитная зона, в которой молниеотвод как бы перехватывает молнию и отводит ее в землю.

Для защиты здания от вторичных воздействий молнии предусматриваются следующие мероприятия: металлические корпуса всего оборудования и аппаратов присоединяются к заземляющему устройству электроустановок, протяженные трубопроводы, выполненные из металла, в местах их взаимного сближения на расстоянии менее 10 см через 30 м соединяются металлическими перемычками.

1. По формулам [15.98] для одиночного стержневого молниеотвода определяются параметры молниезащиты (м/з). Высота зоны защиты над землей h = 50 м, а высота вершины конуса стержневого молниеотвода h0

 

h0 = 0.85· h м (13.1)


h0 = 0.85 · 50 =42.5 м

hх – высота защищаемого сооружения, равна 20 м;

hм – высота стержневого молниеприемника, м;

hа – активная высота молниеотвода, м.

Радиус зоны защиты на уровне земли r0 и радиус защиты на высоте защищаемого сооружения rх находим по формулам [15.100]:

 (13.2)

 м

 

rх = (13.3)

 

rх = (1,1–0,0002·50) ·(50–1,2 ·20) = 26 м

 

hм = h- h00 (13.4)

 

hм= 50 – 42,5 = 7,5 м

 

hа = h – hх (13.5)

 

hа = 50 – 20 = 30 м

α = arctg r0 /h0 (13.6)

где α – угол защиты (между вертикалью и образующей), град.

α = arctg 50/42,5 = 49,6º

2. Определяются габаритные размеры защищаемого объекта в зоне молниезащиты.

φ = arcsin B/ 2· rх (13.7)


cos φ = cos 35.2º = 0.8

А = 2 · rх ·cos φ = 2 · 26 · 0.8 = 41.6 м ≈ 42

А х В х Н = 42 х 30 х 20 м

3. Определяется возможная поражаемость защищаемого объекта в зонах при отсутствии молниезащиты:

N = [(B + 6hх) (A + 6hх) – 7.7 h²х] · n · (13.8)

где n – среднегодовое число ударов молнии в 1 км² земной поверхности в месте нахождения здания или сооружения (т.е. удельная плотность ударов молнии в землю), 1/(км²·год), определяется по [15.99].

N = [(30+6·20) (42+6·20) – 7,720²] · 6 · = 12,3 ·поражений

Основной мерой защиты от возникновения искр при разряде статического электричества служит заземление резервуаров, трубопроводов, сливоналивных устройств. Кроме того, запрещается сливать жидкость свободно падающей струей и применять ременные передачи в пожароопасных помещениях.

14. Компенсация реактивной мощности

 

Все процессы в электрических системах можно охарактеризовать тремя параметрами: напряжением U, силой тока I и мощностью P. Но для удобства расчетов и учета применяются и другие параметры, в том числе реактивная мощность Q. Существует несколько определений реактивной мощности. Например, в курсе ТОЭ сказано, что реактивная мощность, потребляемая индуктивностью и емкостью, идет на создание магнитного и электрического полей. Индуктивность рассматривается как потребитель реактивной мощности, а емкость – как ее генератор.

Мощность в цепи постоянного тока равна произведению силы тока I и напряжению U:

Р = I · U

Для характеристики мощности цепи переменного тока требуется дополнительный показатель, отражающей разность фаз тока и напряжения – угол φ. Произведение показаний вольтметра и амперметра в в цепи переменного тока называется полной мощностью S, для трехфазной цепи . Средняя за период переменного тока мощность называется активной мощностью: . На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника (рисунок 14.1), один катет которого представляет собой активную мощность Р = S · cosφ, а другой катет – реактивную мощность Q = S·sinφ, Q названа мощностью по аналогии с активной мощностью Р. Из треугольника мощности получают следующие зависимости:

 (14.1)

; (14.2)

где cos φ – коэффициент мощности;

tg φ – коэффициент реактивной мощности.

Итак, для характеристики мощности в цепи переменного тока введены понятия полной S, активной Р и реактивной Q мощностей и cos φ. Для расчета реактивной мощности удобней пользоваться не cos φ, а tg φ, так как расчетное значение реактивной мощности легко найти из выражения:

Qр = Рр · tg φ (14.3)

Величина tg φ с приближением угла φ к нулю позволяет найти значение Qр с меньшей погрешностью, чем величина cos φ, так как в зоне малых углов φ, где cos φ = 0,95, изменение коэффициента мощности на 1% приводит к изменению коэффициенту реактивной мощности на 10%. Поэтому в настоящее время tg φ в основном и используют для характеристики Q. Следует помнить об условии толковании Q как мощности.

Работа машин и аппаратов переменного тока, основанная на принципе электромагнитной индукции, сопровождается процессом непрерывного изменения магнитного потока в их магнитопроводах и полях рассеяния. Поэтому подводимый к ним поток мощности должен содержать не только активную составляющую Р, но и реактивную составляющую индуктивного характера Q, необходимую для создания электромагнитных полей, без которых процессы преобразования энергии, рода тока и напряжения невозможны. Выражение реактивной мощности асинхронного двигателя (АД) можно представить и в таком виде:

Qад = Q0 + Qн ·Кз²  (14.4)

где Q0 – реактивная мощность намагничивания (т.е. холостого хода АД);

Qн – потери реактивной мощности в АД на расстояние при номинальной нагрузке;

Кз – коэффициент загрузки АД, Кз = Р / Рн.

Реактивная мощность потребляемая трехфазными силовыми трансформаторами Qт, расходуется, как и в АД, на намагничивание магнитопровода трансформатора Qт0 и на создание полей рассеяния Qтр:

Qт = Qт0 + Qтр · К²з т (14.5)

где Кз т – коэффициент загрузки трансформатора. Потребление реактивной мощности трансформаторами на намагничивание в несколько раз меньше, чем АД, из-за отсутствия воздушного зазора в транс форматоре. Но за счет того, что число трансформаций напряжения в сети достигает 3 – 4 и имеет тенденцию к росту до 5 – 6, суммарная номинальная мощность трансформаторов во много раз больше, чем АД. Поэтому расходы реактивной мощности в АД и в трансформаторах в энергосистеме соизмеримы.

Из всей потребляемой трансформаторами реактивной энергии около 80% расходуется на намагничивание.

Вырабатываемая на электростанциях реактивная мощность при cos φ = 0,927 для потребителей составляет около 80% суммарной активной мощности системы. даже при cos φ = 0,927 все участки электропередачи очень сильно загружены реактивной мощностью: на каждую 1 тыс. кВт мощности от станции требуется передача 800 кВар реактивной мощности в начале передачи и 400 кВар – в конце. Это приводит к повышенным токовым нагрузкам сетей и, как следствие, к повышенным потерям электроэнергии, а также к ухудшению качества напряжения вследствие больших его потерь.

Передача значительной реактивной мощности по элементам СЭС невыгодна по следующим основным причинам:


Информация о работе «Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 116777
Количество таблиц: 17
Количество изображений: 4

Похожие работы

Скачать
38914
26
5

... Так как установка ППЭ в точном геометрическом ЦЭН невозможна из-за нехватки место под строительство, то смещаем ППЭ в сторону питания. 7. Выбор системы питания Система электроснабжения любого промышленного предприятия может быть разделена условно на две подсистемы – питания и распределения электроэнергии внутри предприятия. В систему питания входят питающие линии электропередач (ЛЭП) и ППЭ. ...

Скачать
52091
15
8

... развития: вводятся новые производственные площади, повышается использование существующего оборудования или старое оборудование заменяется новым, более производственным и мощным, изменяется технология и т. д. Система электроснабжения промышленного предприятия (от ввода до конечных приемников электроэнергии) должна быть гибкой, допускать постоянное развитие технологии, рост мощности предприятий и ...

Скачать
169921
30
28

... - 8 25 22,666 12912 40350 Рис. 6. Картограмма электрических нагрузок точкой А на картограмме обозначим координаты центра электрических нагрузок завода. Выбор рационального напряжения При проектировании систем электроснабжения промышленных предприятий важным вопросом является выбор рациональных напряжений для схемы, поскольку их значения определяют параметры линий электропередачи и ...

Скачать
154193
27
28

... повреждения или отключения другой. 1. Определяют ток в линии в нормальном и послеаварийном режимах:  (6.1.5)  (6.1.6) 2. Сечение провода рассчитывают по экономической плотности тока: Для текстильного комбината: Тма = 6200-8000 ч., Тмр = 6220ч. [10]. Следовательно jэк = 1 А/мм2 [9].  (6.1.7) По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-120/19. ...

0 комментариев


Наверх