1. Расчёт потокораспределения в сложнозамкнутой сети (нулевая итерация)
Расчёт потокораспределения в заданной сложнозамкнутой сети проведём методом контурных мощностей (токов) в предположении, что сечение проводов на всех участках одинаково. При расчёте необходимо принять следующие допущения: напряжение во всех узловых точках сети равно номинальному напряжению сети, потерями мощности на участках сети и проводимостями ЛЭП пренебрегаем.
В начале на исходной схеме задаемся произвольным направлением линейных мощностей, протекающих по участкам сети, а так же произвольным направлением контурных мощностей (см. рис. 1.1).
Рис. 1.1. Исходная схема с произвольно выбранным направлением линейных мощностей
Для каждого независимого контура составим уравнения в отношении линейных мощностей по второму закону Кирхгофа. Полученные уравнения имеют следующий вид:
(1.1)
Так как сеть выполнена проводом одного сечения, то от представленных выше уравнений (1) можно перейти к уравнениям, в которых вместо сопротивления участков будут стоять длины см. [4]. Полученные уравнения примут следующий вид:
(1.2)
Далее выражаем линейные мощности через контурные и нагрузочные мощности. Для этого для каждого узла составляем уравнения согласно первому закону Кирхгофа.
Полагаем, что = , = =
Для узла 7:
Для узла 6:
Для узла 2:
Для узла 5:
Для узла 4:
Для узла 3:
Для узла 1:
Заменяем линейные мощности в (2) полученными для них выше выражениями. В результате получаем следующую систему уравнений:
(1.3)
После преобразования система примет следующий вид:
(1.4)
Вычислим значения правых частей уравнений системы (4) и коэффициенты, стоящие перед переменными :
Подставляем найденные значения в выражение (4). Система принимает следующий вид:
(1.5)
Решая систему (5) относительно переменных получаем их следующие значения:
Далее определим значение линейных мощностей протекающих по участкам сети:
Сделаем проверку по второму закону Кирхгофа в отношении полных мощностей для каждого из трёх контуров.
Для первого контура:
Для второго контура:
Для третьего контура:
Так как погрешность по действительной и мнимой частям не превышает 5%, то расчёт выполнен верно.
... (5.2), где - ударный коэффициент, который составляет (табл.5.1). Расчёт ТКЗ выполняется для наиболее экономичного варианта развития электрической сети (вариантI рис.2.1) с установкой на подстанции 10 двух трансформаторов ТРДН-25000/110. Схема замещения сети для расчёта ТКЗ приведена на рис. 5.1. Синхронные генераторы в схеме представлены сверхпереходными ЭДС и сопротивлением (для блоков 200МВт ...
... линиям относят линии, для которых верхняя граница интервала неопределенности потерь превышает установленную норму (например, 5%). 3. Программы расчета потерь электроэнергии в распределительных электрических сетях 3.1 Необходимость расчета технических потерь электроэнергии В настоящее время во многих энергосистемах России потери в сетях растут даже при уменьшении энергопотребления. При ...
... КП.1001.128.07.34.ПЗ Изм Лист № докум. Подпись Дата Электрическая сеть района системы 110кВ Литера Лист Листов Разраб. Демченко В. Руковод. Озина Н.В. НЭТ ...
... 110 78,36 110 25 ИП - а 75 110 150 220 45 а - г 50 110 112,54 220 15 II ИП - в 31 110 99,7 110 25 в - д 17,5 110 78,4 110 25 в - б 6 35 47,9 110 25 Опыт эксплуатации электрических сетей показывает, что при прочих равных условиях предпочтительней вариант с более высоким номинальным напряжением, как более перспективный. В то же время ...
0 комментариев