2.8. Расчет числа действительных тарелок графоаналитическим методом (построением кинетических линий)

 

Эффективность тарелки по Мэрфи:

(2.73)

(2.74)

(2.75)

, где (2.76)

Ey – локальная эффективность по пару;

e – межтарельчатый унос жидкости;

θ – доля байпасирующей жидкости;

S – число ячеек полного перемешивания;

m – коэффициент распределения компонента по фазам в условиях равновесия;

λ=m(R+1)R – фактор массопередачи для укрепляющей части;

λ=m(R+1)/(R+f) – фактор массопередачи для исчерпывающей части.

Локальная эффективность по пару:

, где (2.77)

 – число единиц переноса по паровой фазе на тарелке (2.78)

 – скорость пара в рабочем сечении тарелки (2.79)

 – рабочее сечение тарелки

 – коэффициент массопередачи (2.80)

βxf, βyf– коэффициенты массоотдачи, отнесенные к единице рабочей площади тарелки для жидкой и паровой фаз

(2.81)

(2.82)

Критерий Фруда:

а) в верхней части колонны:

(2.83)

б) в нижней части колонны:

(2.84)

Паросодержание барботажного слоя:

а) в верхней части колонны:

(2.85)

б) в нижней части колонны:

(2.86)

Высота светлого слоя жидкости:

(2.87)

Удельный расход жидкости на 1м ширины переливной перегородки для верхней и нижней частей колонны:

а) в верхней части колонны:

(2.88)

б) в нижней части колонны:

, где (2.89)

b – ширина переливного порога

Коэффициент диффузии в жидкости при средней температуре в верхней и нижней частях колонны:

а) в верхней части колонны:

(2.90)

б) в нижней части колонны:

(2.91)

Коэффициент диффузии в жидкости при температуре t=200C в верхней и нижней частях колонны:

а) в верхней части колонны:

(2.92)

б) в нижней части колонны:

(2.93)

υБ, υТ – мольные объемы бензола и толуола, A=B=1 – коэффициенты.

Вязкость жидкости при t=200С в верхней и нижней частей колонны:

а) в верхней части колонны:


(2.94)

б) в нижней части колонны:

(2.95)

Температурный коэффициент b для верхней и нижней частей колонны:

а) в верхней части колонны:

(2.96)

б) в нижней части колонны:

(2.97)

Коэффициент диффузии в паровой фазе при средней температуре в верхней и нижней частях колонны:

а) в верхней части колонны:

(2.98)

б) в нижней части колонны:

, где (2.99)


Р – давление в колонне

Плотность орошения для верхней и нижней частей колонны:

а) в верхней части колонны:

(2.100)

б) в нижней части колонны:

, где (2.101)

S – число ячеек полного перемешивания. При Dст=1.8 м и b=0.289 м принимаем, что 1 ячейка перемешивания соответствует длине пути жидкости l0=300–400 мм. Пусть l0=350 мм, тогда длина пути жидкости:

(2.102)


3. Расчетная часть

Разделяемая смесь: бензол–толуол (ХF=0.40). Нагрузка колонны по сырью – 10 т/час. Содержание низкокипящего компонента в дистилляте (ХD=0.97), в кубовом остатке (ХW=0.029). Контактный элемент – тарелка.

  3.1. Материальный баланс колонны и рабочее флегмовое число

Согласно уравнениям материального баланса (2.14, 2.15, 2.16) выразим и рассчитаем расход дистиллята и кубового остатка:

;

Определим концентрации питания, дистиллята и кубового остатка в мольных долях в соответствии с формулами (2.17, 2.18, 2.19):

Питание:

 

Дистиллят:


Кубовый остаток:

 

Вычислим равновесные составы фаз для бензольно-толуольной смеси при атмосферном давлении, считая, что смесь характеризуется законом Рауля. Расчет представлен в табл. 3.1.

Таблица 3.1

Парожидкостное равновесие системы бензол–толуол

T,0С

Pб,

мм.рт.ст. ¤

Рт,

мм.рт.ст. ¤

П,

мм.рт.ст.

x=(П–Рт)/(Рб–Рт)

y*=(Р*б/П)x

80 760,0 300,0 760 1 1
84 852,0 333,0 760 0,823 0,922
88 957,0 379,5 760 0,659 0,830
92 1078,0 432,0 760 0,508 0,720
96 1204,0 492,5 760 0,376 0,596
100 1344,0 559,0 760 0,256 0,453
104 1495,0 625,5 760 0,155 0,304
108 1659,0 704,5 760 0,058 0,128
110 1748,0 760,0 760 0 0
Примечание: ¤ – [8]

Полученные данные наносим в виде кривых в координатах t–x,y и y*–x (см. рис. 3.20, 3.21).

Рис.3.20. Фазовая диаграмма t–x,y системы бензол–толуол.

Рис. 3.21. Диаграмма равновесия между паром и жидкостью в системе бензол–толуол.

По диаграмме y*–x находим y*F при xF=0.44: y*F=0.66.

По формуле (2.20) определим минимальное флегмовое число:

Далее, задав различные значения коэффициента избытка флегмы Z, определим флегмовые числа. Затем рассчитаем b (длина отрезка, отсекаемого на оси ординат верхней рабочей линией). Графическим построением определим число ступеней изменения концентраций для каждого флегмового числа (см. приложение 1).

Расчеты и результаты графических построений приведены в табл. 3.2.

Таблица 3.2 Данные для расчета рабочего флегмового числа

Z=R/Rmin

1 1.1 1.2 1.4 1.5 1.7 1.9 2.5
R 1.41 1.55 1.69 1.97 2.12 2.40 2.68 3.53

b=XD/(R+1)

0.40 0.38 0.36 0.33 0.31 0.29 0.26 0.21
N 27 20 18 16 14 13 12 11
N(R+1) 65.07 51 48.42 47.52 43.68 44.20 44.16 49.83

Минимальное значение N(R+1) соответствует числу ступеней изменения концентраций, равному 14, и рабочему флегмовому числу R=2.12. Данный вывод графически интерпретирует рис. 3.22.

Рис. 3.22. Диаграмма равновесия между паром и жидкостью в системе бензол–толуол при флегмовом числе R=2.12

Расчет рабочего флегмового числа возможен также с применением эмпирической зависимости (2.21):

  3.2. Число теоретических тарелок

Рассчитаем уравнение рабочей линии верхней части колонны по формуле (2.22) при XD=0.97; R=2.12:

y=

Интерполяцией определим составы жидкости и пара, покидающих тарелки верхней (укрепляющей) части колонны. Для расчета используем данные табл. 3.1.


x0=y1=XD=0.970

1)  y2=0.947

2)  y3=0.913

3)  y4=0.863

4)  y5=0.797

5)  y6=0.729

6)  y7=0.667

С 7-ой ступени стекает жидкость, близкая по составу к исходной смеси (ХF=0.44). Примем 7-ую ступень за ступень питания.

Далее для определения составов жидкости и пара будем пользоваться уравнением рабочей линии для нижней (исчерпывающей) части колонны.

Уравнение рабочей линии нижней части колонны определим по формуле (2.23) при ХW=0.03; R=2.12; F=10 т/час; D=3.94 т/час:

y=

1)  y8=0.618

2)  y9=0.585

3)  y10=0.538

4)  y11=0.475

5) y12=0.392

6) y13=0.305

7) y14=0.214

8) y15=0.137

9) y16=0.079

Итак, с 16-ой ступени стекает жидкость, содержание бензола в которой близко к содержанию его в кубовом остатке (ХW=0.03). Следовательно, при подаче исходной смеси на 7-ую ступень для осуществления процесса необходим аппарат, эквивалентный 16 теоретическим ступеням.

На практике данный алгоритм часто выполняют графически, строя ступенчатую линию между кривой равновесия и рабочей линией (см. приложение 1).

  3.3. Средние массовые расходы пара и жидкости в верхней и нижней частях колонны

Рассчитаем средний мольный состав жидкости в верхней и нижней частях колонны, используя формулы (2.34, 2.35):

а) в верхней части колонны:

б) в нижней части колонны:

Рассчитаем средний мольный состав пара в верхней и нижней частях колонны.

1 способ с использованием формул (2.36, 2.37):

а) в верхней части колонны при yD=xD=0.97; y*F=0.66:

б) в нижней части колонны при yW=xW=0.03; y*F=0.66:

2 способ с использованием уравнений рабочих линий (2.22, 2.23):

а) в верхней части колонны:

б) в нижней части колонны:

Определим средние мольные массы жидкости в верхней и нижней частях колонны по формулам (2.38, 2.39):

а) в верхней части колонны:

б) в нижней части колонны:

Определим средние мольные массы пара в верхней и нижней частях колонны по формулам (2.40, 2.41):

а) в верхней части колонны при Yср.В.=0.790 кмоль/кмоль смеси:

б) в нижней части колонны при Yср.Н.=0.336 кмоль/кмоль смеси:

Определим мольные массы исходной смеси и дистиллята по формулам (2.48, 2.49):

Рассчитаем средние массовые расходы по жидкости для верхней и нижней частей колонны по формулам (2.50, 2.51):

а) в верхней части колонны:

б) в нижней части колонны:

 

Рассчитаем средние массовые расходы пара для верхней и нижней частей колонны по формулам (2.52, 2.53):

а) в верхней части колонны:

б) в нижней части колонны:

  3.4. Скорость пара и диаметр колонны

Средние температуры пара определим по диаграмме t–x,y (см. рис. 3.20):

1 способ:

при yср.В=0.790→tср.В.=890С

при yср.Н=0.336→tср.Н.=1030С

Определим среднюю температуру в колонне при tср.В.=890С, tср.Н.=1030С:

2 способ:

при xD=0.97→tD=830С

при xW=0.03→tW=1090С

при xF=0.44→tF=900С

Далее рассчитаем средние температуры в верхней и нижней частях колонны:

Определим среднюю температуру в колонне при tD=830С; tW=1090С; tF=900С

Средние плотности пара находим по формулам (2.42, 2.43):

а) в верхней части колонны при tср.В.=890С:

б) в нижней части колонны при tср.Н.=1030С:

Среднюю плотность пара в колонне определим по уравнению (2.44):

Рассчитаем среднюю плотность жидкости (смеси) в колонне:


Информация о работе «Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол»
Раздел: Химия
Количество знаков с пробелами: 75524
Количество таблиц: 5
Количество изображений: 25

Похожие работы

Скачать
76128
22
7

... Расход % кг/час т/год Фр. 62-1050С 6,5 23897,06 195000 Фр. 62-850С 3,3 12132,35 99000 Фр. 85-1050С 3,2 11764,71 96000 Таблица 15 Сводный материальный баланс блока стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ Приход % кг/час т/год Расход % кг/час т/год Нестабильный бензин 25,72 94558,82 771600 УВГ 1,28 4705,88 38400 Фр. С5-620С ...

0 комментариев


Наверх