2.3. Двойные смежные классы
Пусть H и K – подгруппы группы G и g Î G. Множество
HgK ={ hgk | h Î H, k Î K}
называется двойным смежным классом группы G по подгруппам H и K
ЛЕММА 2.3.1. Пусть H и K –подгруппы группы G. Тогда справедливы следующие утверждения:
1) Каждый элемент gÎ G содержится в единственном двойном смежном классе HgK;
2) Два двойных смежных класса по H и K либо совпадают, либо их пересечение пусто;
3) Группа G есть объединение непересекающихся двойных смежных классов по подгруппам H и K;
4) Каждый двойной смежный класс по H и K есть объединение правых смежных классов по H и левых смежных классов по K;
5) Если группа G конечна, то двойной смежный класс HgK содержит
| K: H K | правых смежных классов по H и | H : H K| левых смежных классов по К.
Доказательство.
(1)Так как каждая подгруппа содержит единичный элемент, то
g=ege Î HgK
Допустим, что gÎHxK. Тогда g=hxk для некоторых hÎH, kÎK и
HgK=H(hxk)K=HxK.
(2) и (3) следуют из (1)
(4)Так как
HgK= =,
то утверждение (4) доказано.
Подсчитаем число правых смежных классов в разложении HgK= по подгруппе H. Допустим, что Hgk=Hgk. Тогда
Hg kk = Hg и kk Î gHgK=HK
Справедливо и обратное, т.е. если kkÎ HK, то
kkÎ gHg, g kkÎHg, g kÎHgk
и Hg k= Hgk. Поэтому, в двойном смежном классе HgK правых смежных классов по H столько, сколько их в группе K по подгруппе HK.
Аналогично,
Hgk= и hgK=hgK
тогда и только тогда, когда hhÎHK. Поэтому, в произведении HgK левых смежных классов по K будет точно столько, каков индекс
|H : H K|
Произведение подгрупп. При g = e двойной смежный класс HgK=HK={hk | hÎH , kÎK} превращается в произведение подгрупп H и K . В общем случае HK не является подгруппой.
Пример:
Найдем разложение симметрической группы S в левые смежные классы по подгруппе .
Для этого найдем все левые смежные классы группы
S={Î,(12),(13),(23),(123),(132)} по подгруппе H=={Î,(12)}
ÎH = Î{Î, (12)} = {Î, (12)} = H,
(12)H = (12) {Î, (12)} = {(12), Î} = H,
(13)H = (13) {Î, (12)} = {(13), (123)},
(23)H = (23) {Î, (12)} = {(23), (132)},
(123)H = (123){Î,(12)} = {(123),(13)} = (13)H,
(132)H = (132){Î,(12)} = {(132),(23)} = (23)
Искомое разложение принимает вид
S=ÎH (13) H (23) H.
0 комментариев