Приложения определенного интеграла к решению некоторых задач механики и физики

2097
знаков
0
таблиц
2
изображения

Приложения определенного интеграла к решению некоторых задач механики и физики

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) =(x), то статические моменты этой дуги Mx и My относительно коорди­натных осей Ox и Oy равны

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычис­ляются по формулам

а координаты центра масс  и  — по формулам

где l— масса дуги, т. е.

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох

и Оу дуги цепной линии y=chx при 0≤x≤1.

1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и =1.

◄ Имеем: Следовательно,

 ►

Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.

◄ Имеем:

Отсюда получаем:

В приложениях часто оказывается полезной следующая

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости ду­ги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

 Пример 3. Найти координаты центра масс полуокружности

◄Вследствие симметрии . При вращении полуокружности вок­руг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем

Отсюда , т.е. центр масс C имеет координаты C.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7.

Пример 4. Скорость прямолинейного движения тела выражает­ся формулой  (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

◄ Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом

то имеем:

 ►

Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в беско­нечность?

<4| Работа переменной силы / (#), действующей вдоль оси Ох на от­резке [а, Ь], выражается интегралом


Информация о работе «Приложения определенного интеграла к решению некоторых задач механики и физики»
Раздел: Математика
Количество знаков с пробелами: 2097
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
29565
0
6

... формулы Ньютона — Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано. Символ ∫ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово ...

Скачать
41919
0
0

... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...

Скачать
52851
0
3

... и доказал расходимость гармонического ряда. До сих пор в учебной литературе находит себе место парадокс И. Бернулли. Запишем таблицу 1/1*2 1/2*3 1/3*4 1/4*5... 1/2*3 1/3*4 1/4*5... 1/3*4 1/4*5... ……………………………. Просуммируем по строкам; найдем S1 = 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5+...= 1 – ½ + ½ - 1/3 + 1/3 – ¼ + … = 1, S2 = ½ - 1/3 + 1/3 - ¼ +... = ...

Скачать
44324
0
22

... Из этой теоремы следует, что класс функций, представимых рядами Фурье, довольно широк. Поэтому ряды Фурье нашли широкое применение в различных отделах математики. Особенно успешно ряды Фурье применяются в математической физике и её приложениях к конкретным задачам механики и физики. Этот вопрос можно решить с помощью теоремы Дирихле. («Краткий курс высшей математики», Шнейдер и др., стр. 181) ...

0 комментариев


Наверх