3.  Сопоставление задач.

Цель: показать важность отношений «больше на…», «больше в…», «меньше на…», и т.п.

На данном этапе полезно сопоставлять аналогичные задачи в два действия и видоизменять первую по образцу второй, а вторую по образцу первой. Например:

1)  Мальчик успел решить на уроке 3 столбика примеров, по 4 примера в каждом столбике, а его сосед на 3 примера меньше. Сколько примеров решил второй мальчик?

2)  В одном доме 3 этажа и в каждом этаже по 6 окон, а в другом доме на 2 окна больше. Сколько окон во втором доме?

При сопоставлении этих задач сначала указывается их сходство, затем разница и, наконец, выясняется, почему в задаче про мальчиков второе действие – вычитание, а в задаче про окна – сложение и как можно изменить первую задачу, чтобы она решалась как вторая и вторую, чтобы она решалась как первая.

4.  Преобразование задачи

 Цель: формировать у детей умение преобразовывать задачи на репродуктивном уровне, закрепить знания детей о компонентах задачи: условии и вопросе, закреплять знания и способы учебной деятельности при решении задач.

1) Детям дается задача: «В зоомагазине 4 клетки. В трех из них по 5 волнистых попугайчиков в каждой. Сколько волнистых попугайчиков в четвертой клетке, если в четырех клетках всего 22 волнистых попугайчика?»

- О чем говориться в задаче?

- Что нам известно?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

Составление краткой записи в виде предметной иллюстрации:

 

Решение задачи. Оформление решения.

Далее, работая над имеющейся краткой записью, изменяем задачу.

- «В зоомагазине 4 клетки. В двух из них по 5 волнистых попугайчиков в каждой. Сколько всего волнистых попугайчиков, если в двух других по 4 волнистых попугайчика в каждом?»

- Как изменится краткая запись?

- Что изменилось в задаче?

- Повторите новую задачу, опираясь на краткую запись.

- Решите эту задачу.

Задача № 4 стр.52 (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 часть)

«В школьном уголке природы 4 аквариума. В трёх из них по 8 рыбок в каждом. Сколько рыбок в четвертом аквариуме, если в четырех аквариумах всего 31 рыбка?»

- О чем говориться в задаче?

- Что нам известно?

- Что значит по 8 рыбок в каждом?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

- Что нам нужно найти сначала?

- Сделаем краткую запись в виде рисунка:

- Решите задачу самостоятельно.

8 * 3 = 24 (р) в 3-х аквариумах 31 – 24 = 7(р) в 4-ом аквариуме

- Как мы можем изменить задачу? Составьте новую задачу, запишите ее и затем решите.

2) Задача № 5 стр. 57 (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 класс, 2 часть): «Большой кенгуру сделал 3 прыжка по 8 метров, а затем в обратную сторону 2 прыжка по 9 метров. Какое расстояние преодолел кенгуру?»

- О чем говориться в задаче?

- Что нам известно?

- Какой вопрос ставится в задаче?

- Сделаем краткую запись.

- Можем ли мы сразу ответить на вопрос?

- Что нам нужно найти сначала?

8 * 3 = 24 (м) вперед 9 * 2 = 18 (м) назад 24 + 18 = 42 (м) всего

- Изменится ли задача, если я напишу её вот так: «Большой кенгуру пропрыгал 24 м вперед и 18 м назад. Какое расстояние преодолел кенгуру?»

- Какая часть задачи изменилась? Изменился ли вопрос?

- Изменится ли задача, если я напишу её вот так: «Большой кенгуру пропрыгал 24м вперед, а назад на 6метров меньше. Какое расстояние преодолел кенгуру?»

- Какая часть задачи изменилась? Изменился ли вопрос?

- Изменится ли задача, если я напишу её вот так: «Большой кенгуру пропрыгал 24 м вперед, а назад на 6 метров меньше. Какое расстояние преодолел кенгуру, прыгая назад?»

- Какая часть задачи изменилась? Изменился ли вопрос?

- Изменится ли задача, если я напишу её вот так: «Большой кенгуру пропрыгал 24 м вперед и 2 прыжка по 9 метров назад. Какое расстояние преодолел кенгуру?»

- Какая часть задачи изменилась? Изменился ли вопрос?

- Измените условие задачи, на примере того, как я изменила.

= Ученики могут предложить следующую задачу: «Большой кенгуру сделал три прыжка по 8метров, а затем преодолел путь в обратную сторону 18метров. Какое расстояние преодолел кенгуру?»

На этапе формирования умений-копий необходимо ввести понятие «преобразование», объяснив, что это деятельность по изменению вопроса, условия или вопроса и условия. Также необходимо составить алгоритм:

Прочитай задачу

 

Составь план решения

 

Сделай краткую запись

 

Реши задачу

 

Измени в краткой записи связь между числовыми данными в условии

 

Измени в краткой записи связь между числовыми данными в условии и связь между числовыми данными условия и требования

 

Измени в краткой записи связь между числовыми данными условия и числовыми данными требования

 

Сформулируй текст

 

Реши новую задачу

 

З этап: формирование продуктивных умений или умений-знаний.

Цель: формирование умений самостоятельно преобразовывать задачи.

На третьем этапе учитель дает детям задачу, они ее решают, преобразовывают решенную задачу и затем решают преобразованную задачу.

Например, дана задача (Т.Е. Демидова, С.А. Козлова. Моя математика. 2 класс, 2 часть стр. 59 № 6 (а))

- Прочитай задачу: « В двух салонах автобуса находилось по 9 пассажиров в каждом. Сколько пассажиров оказалось в автобусе после остановки, если 4 человека вышли, а 7 вошли?»

- О чем говориться в задаче?

- Что нам известно?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

- Что нам нужно найти сначала?

- Составьте краткую запись.

- Запишите решение задачи.

2 * 9 = 18 (п) в автобусе было

18 – 4 + 7 = 21 (п) стало

- Измените условие задачи так, чтобы она решалась меньшим количеством действий.

= Ученики могут изменить так: «В автобусе находилось 18 человек. Сколько пассажиров стало в автобусе после остановки, если 4 человека вышли, а 7 вошли?»

- Проверим, правильно ли вы выполнили задание. Решите данную задачу

18 – 4 + 7 = 21 (п) стало

- Как еще можно изменить условие задачи, чтобы она решалась меньшим количеством действий?

= Ученики могут изменить так: «В автобусе находилось 18 человек. Сколько пассажиров стало в автобусе после остановки, если пассажиров стало на 3 человека больше?» и т.д.

- Проверим, правильно ли вы выполнили задание. Решите данную задачу

18 + 3 = 21 (п)

2. Дана задача: «В магазин привезли 4 ящика огурцов по 20 кг в каждом. Сколько всего огурцов привезли?»

- Измени задачу так, чтобы она решалась в два действия.

= Ученики могут предложить следующие задачи: «В магазин привезли 4 ящика огурцов по 20кг в каждом и 2 ящика по 15кг. Сколько всего огурцов привезли?». «В магазин привезли 4 ящика огурцов по 20кг в каждом. Продали 15кг сколько огурцов осталось?» и т.д.

3. Дана задача: «В детский сад привезли 47кг яблок. Это на 15кг больше, чем апельсинов. Сколько килограммов свежих фруктов привезли?»

- О чем говориться в задаче?

- Что нам известно?

- Какой вопрос ставится в задаче?

- Можем ли мы сразу на него ответить?

- Что нам нужно найти сначала?

- Составим краткую запись:

Ябл. _________

Ап. ______

- Запишите решение задачи.

- Преобразуем условие задачи. Давайте воспользуемся краткой записью. Что мы можем в ней изменить? Давайте это сделаем.

Например:

а) Ябл. _________

Ап. ____________

б) Ябл. _________

Ап. ______

Бан. ___

- Сформулируем текст задач на основе сделанных нами кратких записей.

- Решите задачи.

При обучении детей преобразованию задач, большое значение имеет краткая запись, так как детям удобнее увидеть связи между числовыми данными именно на краткой записи, то и изменить их так же удобнее на этой же краткой записи.


Информация о работе «Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе»
Раздел: Педагогика
Количество знаков с пробелами: 84483
Количество таблиц: 6
Количество изображений: 4

Похожие работы

Скачать
52072
1
5

... и обобщение опыта учителей при проведении уроков математики по данной теме. Курсовая работа состоит из введения, двух глав, заключения, списка литературы. Глава I. Методические особенности изучения площади геометрических фигур и единиц ее измерения на уроках математики в начальной школе 1.1 Возрастные особенности развития младших школьников на этапе формирования геометрических представлений ...

Скачать
95636
1
2

... интересует. Соблюдение принципа наглядности – одно из основных требований, которому должно удовлетворять обучение математике в начальных классах. В начальных классах эффективно использовать технические средства обучения (ТСО) и наглядность по несколько минут на различных этапах урока. В процессе работы важно применять технические средства обучения в комплексе с другими средствами наглядности, ...

Скачать
210505
4
8

... и младших школьников. Анкета для студентов включала в себя два вопроса, один из которых о том, в чем, по их мнению, заключается развитие математических способностей школьников, а второй ¾ для выяснения отношения студентов к проведению внеклассной работы по математике в начальных классах. Анкета для преподавателей имела своей целью выяснить, проводят ли (а если проводят, то как часто) учителя ...

Скачать
26217
0
0

... натурального ряда. В качестве графической модели используем числовой луч, на котором дети отмечают точки, соответствующие натуральным числам. Смысл действий сложения и вычитания. В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, ...

0 комментариев


Наверх