4.3 Кинетика процессов обжига

Особенности исследования кинетики реакций, в том числе реакций взаимодействия конденсированных фаз сульфидов с газообразным кислородом, заключаются в необходимости расчленения процесса на отдельные стадии, кинетика которых и определяет суммарную скорость реакции. Одним из направлений интенсификации процесса является работа на воздухе, обогащенном кислородом, что возможно вследствие зависимости кинетики окисления сульфидов от его концентрации в газовом потоке. Аналогично на скорость окисления влияет повышение концентрации кислорода в газовой среде. В ряде случаев при описании кинетики конкретных сульфидных систем необходимо учитывать структуру оболочек твердых продуктов реакции. В целом соотношение скоростей химической реакции диффузионных процессов являются определяющими при рассмотрении кинетики реальных процессов.

Как гетерогенный, этот процесс имеет две непременные последовательные стадии: диффузия О2 к поверхности сульфида и реакцию окисления на поверхности сульфида. Если диффузия значительно медленней реакции, то процесс протекает в диффузионной области, а в противном случае - в кинетической. При соизмеримых скоростях этих стадий процесс протекает в переходной области. Выявление лимитирующей, имеет большое практическое значение, т.к. раскрывает пути интенсификации процесса.

Кинетическая область характеризуется малыми скоростями окисления сульфидов (тление), а диффузионная область - большими скоростями (горения). Переход из одной области в другую при подъеме температуры сопровождается воспламенением (переходная область). Характеристикой граничного условия перехода из кинетической области в диффузионную служит температура воспламенения сульфидов.

Поскольку окисление сульфидов протекает в далеких от равновесия условиях и поэтому необратимо, то скорость процесса равна скорости прямой реакции в кинетической области или скорости диффузии О2 в диффузионной области.

В кинетическом уравнении закона действующих масс скорось процесса должна быть представлена произведением функции от каждого из влияющих факторов в отдельности:

, (2.6)

где т - масса сульфида; г - время; k- температурный; А- геометрический и f(cO2 ) - концентрационный факторы.

В кинетической области уравнение (2.6) примет вид

. (2.7)

В уравнении (2.7) k = К0е-E/RT, где k - константа скорости гетерогенной реакции; Е - энергия активации; k0 и Е - практически постоянные; А = S - межфазная поверхность взаимодействующих веществ; f(сO2 ) = cnO2 . Указанное выражение концентрационного фактора обусловлено тем, что cO2 влияет только на скорость обратной реакции, которая пренебрежимо мала. Кинетический порядок по кислороду равен 1≤ n≤ 2.

В диффузионной области правая часть уравнения (2.6) тождественна уравнению первого закона Фика:

, (2.8)

где D - коэффициент диффузии O2; и - концентрации О2 соответственно у поверхности сульфида и в газовой среде; S - толщина слоя, в котором диффузия самая медленная. Поскольку скорость процесса лимитируется подводом O2 к сульфиду, то ≈0. С учетом этого уравнения (2.8) принимает вид

. (2.9)

Если самой медленной стадией является диффузии О2 в слое газовой среды, прилегающей к внешней поверхности сульфидного зерна, то процесс протекает во внешнедиффузионной области. Самой медленной стадией может быть диффузии О2 через слой окалины на зерне, тогда процесс протекает во внутридиффузионной области.

Степень вторичного образования в процессе обжига имеет максимум при изменении температуры. Чем выше термическая стойкость сульфатов и выше концентрация оксидов серы в газовой фазе, тем больше температура максимума сульфатизации при обжиге и выше степень сульфатизации. Кинетически термическую стойкость сульфатов можно характеризовать температурой начального заметного разложения, которая зависит от ряда условий.

В зависимости от условий обжига цинковых концентратов и содержания в газовой фазе SO2 и О2 температура, соответствующая максимуму сульфатизации цинка, лежит в пределах 750-850 0С.[1, c.136-143]



Информация о работе «Обжиг цинковых концентратов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 73376
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
14052
8
0

... двойном избытке воздуха Компоненты кг p, кг/м м3 об.% SO2 46,06 2,86 16,10 6,34 SO3 5,00 3,62 1,38 0,54 CO2 1,45 1,90 0,76 0,30 N2 259,94 1,25 207,96 81,91 O2 38,82 1,428 27,68 10,91 Итого: 351,27 253,88 100 Материальный баланс предварительного обжига цинковых концентратов представлен в табл.6. Таблица 6. Материальный баланс обжига Приход кг Расход ...

Скачать
16681
3
0

... * 94 * 40 * 24 = 2057472 кДж Итого расход тепла составит QРАСХ = Q1 + Q2 + Q3 + Q4 + Q5 + Q6 = 767378131 кДж Небаланс составляет: 777609196 – 767378131 = 10231065 кДж или 1,32% По результатам расчета составляем таблицу 3. Таблица 3 – Суточный тепловой баланс выщелачивания Статьи прихода кДж % Статьи расхода кДж % Тепло огарка Тепло цинковой пыли Тепло воды для промывки ке

Скачать
23685
0
0

... 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий. Основной способ получения цинка — электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ...

Скачать
13027
0
0

... металлургия легких металлов Цветные металлы обладают прекрасными физическими свойствами: электропроводимостью, ковкостью, плавкостью, способностью образовывать сплавы, теплоемкостью. По стадиям технологического процесса цветная металлургия делится на: 1)            Добычу и обогащение рудного сырья (ГОК – горно-обогатительные комбинаты). ГОК базируются у источников сырья, т. к. для ...

0 комментариев


Наверх