3. Прочностные расчеты передач, валов, шпиндельного узла

Расчет передачи колесо-рейка.

Принимаем передачу колесо-рейка, используя станок аналог 2А135.

Определяем контактные напряжения:

,

где,

M – момент на реечном колесе;

b– ширина зубчатого колеса; b=(8…12)m, принимаем b=8m=28мм;

kv– коэффициент, зависящий от скорости вращения зубчатого колеса. При V<<1м/с принимаем kv=1.

m и z– модуль и число зубьев зубчатого колеса.


где,

Q- тяговая сила, необходимая для осуществления подачи, Q=21256,5Н

(см. п. 1.21.1).

Определяем изгибные напряжения:

где,

- угол наклона зуба, для прямозубого колеса ;

y- коэффициент формы зуба, для ориентировочного расчета принимаем

y=0,1.

Исходя из полученных значений контактных и изгибных напряжений, принимаем Сталь 45, способ термической обработки закалка.

[]=1000МПа, []=250МПа.

Проверочный расчет зубчатых передач на прочность

Расчет проведем для расчетной цепи по [2] с применением специализированного САПР.

Определяем расчетные моменты на валу ведущих колес по формуле:

Где Мтяг – момент на тяговом валу, Нм, Мтяг=520,8Нм (см. п. 3.1.1);

 – коэффициент полезного действия на i-м валу, об/мин.

Расчет моментов начинаем с десятого вала; передаточные отношения на валах берем с графика подач рисунка 3:

1) i10 = 1/47;

2) i9 = 1;

3) i8 = 40/40 ;

4) i7 = 26/52;

5) i6 = 25/50;

6) i = 21/30;

7) i5 = 30/34 ;

Исходные данные для расчета зубчатых передач занесем в таблицу 2:

Для определения расчетной частоты вращения ведущего колеса и наибольшей частота вращения ведущего колеса в коробке подач возьмем значения частот вращения из структурной схемы коробки скоростей, и умножая эти значения на передаточные отношения расчетной цепи коробки подач получим нужные нам значения.

Значения частот из коробки скоростей следующие:

Определяем значения частот вращения валов в коробке подач по следующим формулам:

Значения наибольшей и расчетной частот вращения 5-го вала:

Значения наибольшей и расчетной частот вращения промежуточного вала:

Значения наибольшей и расчетной частот вращения 6-го вала:

Значения наибольшей и расчетной частот вращения 7-го вала:

Значения наибольшей и расчетной частот вращения 8-го вала:

Таблица 2

Наименование Обозначение Размерность Номер передачи
1 2 3 4 5
1 Расчетный момент на валу ведущего колеса М Нм 3,89 4,21 5,72 10,86 20,65
2 Вид передачи цилиндр прямозуб цилиндр прямозуб цилинпрям

Цил

прям

Цил

прям

3 Угол наклона зуба

град 0 0 0 0 0
4 Модуль передачи m мм 2 2 2 2 2
5 Число зубьев ведущего колеса

30 21 25 26 40
6 Число зубьев ведомого колеса

34 30 50 52 40
7 Ширина зубчатого венца ведущего колеса

мм 12 12 12 12 12
8 Ширина зубчатого венца ведомого колеса

мм 12 12 12 12 12
9 Конструкция (признак переключения) передачи Не Переключаемая непереключаемая Перек Перек Перек
10 Расположение зубчатого колеса на валу посредине На консоли Вблизи Вблизи Вблизи
11 Расчетная частота вращения ведущего колеса

об/мин 125 110 77 38,5 19,25
12 Наибольшая частота вращения ведущего колеса

об/мин 1000 882 616 308 154
13 Время работы передачи с нагрузкой Т час 5000 5000 5000 5000 5000
14 Коэффициент коррекции ведущего колеса

0 0 0 0 0
15 Коэффициент коррекции ведомого колеса

0 0 0 0 0
16 Признак связи колеса с шестерней

Не

паразитное

Не

паразитное

Не

Паразит.

Не

Паразит.

Не

Паразит

17 Режим нагрузки передачи Средний Средний Средн Сред Сред
18 Характер процесса резания Равномерный Равномерный Равн Равн Равн
19 Вид механической обработки зубьев шлифован шлифован шлифован шлиф нешлиф
20 Материал ведущего колеса 40Х-Н 40Х-Н 40Х-Н 40Х-Н 40Х-Н
21 Материал ведомого колеса 40Х-Н 40Х-Н 40Х-Н 40Х-Н 40Х-Н

Подробный расчет валов. Расчет валов ведем по [3]. Расчет моментов на колесе, приводящем вал в движение: Программа расчета двухопорных валов позволяет работать с валами, на которых расположено только два колеса. Поэтому рассматриваем только колеса входящие в расчетную цепь. Моменты для них уже были рассчитаны в п. 3.2.1. ассчитаем 8-й, 9-й вал на прочность и жесткость. Подготовим исходные данные для расчета обоих валов. Материал для 8-го и 9-го вала принимаем Сталь 45 с пределом текучести σт=450 МПа, пределом прочности при кручении σ-1=340 МПа, пределом прочности σв=750 МПа. Используя чертеж № 06.С.03.15.01.000 ВО – лист 1 и № 06.С.03.15.03.000 ВО – лист 2, составляем расчетные схемы валов. Расчетная схема восьмого вала


Рисунок 4


Расчетная схема девятого вала

Рисунок 5

Исходные данные для восьмого вала:

1) M – крутящий момент на зубчатом колесе, приводящем вал в движение;

M = 20,65 Н×м (см. п.3.2.1).

2) DHO = m×z – диаметры начальных окружностей зубчатых колес в местах приложения нагрузок.

DHO2 = 2·40 = 80 мм;

DHO4 = 2×52 = 104 мм.

3) - тангенс суммы углов зацепления и трения, при стандартном a = 20° принимаем .

4) KS – эффективный коэффициент концентрации нормальных напряжений в опасных сечениях вала.

;

Используя таблицы [3] определяем: для шлицевого участка вала и материала с sв = 750 МПа ks = 1,6; для материала с sв = 750 МПа и классом шероховатости 6 ksn = 1,1.

.

5) KT – эффективный коэффициент концентрации касательных напряжений опасных сечениях вала.

;

Используя таблицы [3] определяем: для шлицевого участка вала и материала с sв = 750 МПа kt = 2,45; для материала с sв = 750 МПа и классом шероховатости 6 ktn = 1,1.

.

6) n – частота вращения вала под нагрузкой;

n = 19,25 об/мин

7) L1, L2, L3 – длины участков вала 1, 2, 3 в соответствие с составленной расчетной схемой. Длина L указывается со знаком “минус”, если это – расстояние от опоры до зубчатого колеса, при чем колесо находится между опорами.

L1 = -34,5 мм, L2 = 97,5 мм, L3 = -49 мм.

8) DH1, DH2, DH3 – наружные диаметры вала на участках 1, 2, 3.

,

гдеd – диаметры отдельных ступеней в пределах участка, мм;

l – длины ступеней, мм.

;

;

.

9) DBH1, DBH2, DBH3 – внутренние диаметры вала на участках 1, 2, 3. Если осевого отверстия на участке нет, то задают DBH = 0.

DBH1 = DBH2 = DBH3 = 0.

10) SS, МПа - предел текучести материала вала;

S-150, МПа - предел усталости материала вала.

Эти величины назначают в зависимости от выбранного материала по справочной литературе, для Стали 45 и диаметра заготовки меньше 50 мм.

SS = 450 МПа

SS-150= 300 МПа

11) K – коэффициент податливости опор;

Для опор с высокой жесткостью можно принять К1’=К3’=K1”=K3”=0.

12) B2, B4 – углы наклона зубьев зубчатых колес. Для прямозубых колес B2 = B4 = 0.

13) Ф2, Ф4 – угол между осью OX и линией центров зубчатых пар. Ф2, Ф4 указывается со знаком минус, если угол отсчитывается по часовой стрелки.

Снимаем величины с расчетной схемы: Ф2 = 39°24’, Ф4 = 198°12’.

Исходные данные для девятого вала:

1) M – крутящий момент на зубчатом колесе, приводящем вал в движение;

M = 19,63 Н×м (см. п.3.2.1).

2) DHO = m×z – диаметры начальных окружностей зубчатых колес в местах приложения нагрузок.

DHO2 = 2·40 = 80 мм.

3) - тангенс суммы углов зацепления и трения, при стандартном a = 20° принимаем .

4) KS – эффективный коэффициент концентрации нормальных напряжений в опасных сечениях вала.

;

Используя таблицы [3] определяем: для шлицевого участка вала и материала с sв = 750 МПа ks = 1,6; для материала с sв = 750 МПа и классом шероховатости 6 ksn = 1,1.

.

5) KT – эффективный коэффициент концентрации касательных напряжений опасных сечениях вала.


;

Используя таблицы [3] определяем: для шлицевого участка вала и материала с sв = 750 МПа kt = 2,45; для материала с sв = 750 МПа и классом шероховатости 6 ktn = 1,1.

.

6) n – частота вращения вала под нагрузкой;

n = 19,25 об/мин

7) L1, L2 – длины участков вала 1, 2 в соответствие с составленной расчетной схемой. Длина L указывается со знаком “минус”, если это – расстояние от опоры до зубчатого колеса, при чем колесо находится между опорами.

L1 = -34 мм, L2 = -146,5 мм.

8) DH1, DH2, DH3 – наружные диаметры вала на участках 1, 2.

,

гдеd – диаметры отдельных ступеней в пределах участка, мм;

l – длины ступеней, мм.

;

.

9) DBH1, DBH2 – внутренние диаметры вала на участках 1, 2, 3. Если осевого отверстия на участке нет, то задают DBH = 0.

DBH1 = DBH2 = DBH3 = 0.

10) SS, МПа - предел текучести материала вала;

S-150, МПа - предел усталости материала вала.

Эти величины назначают в зависимости от выбранного материала по справочной литературе, для Стали 45 и диаметра заготовки меньше 50 мм.

SS = 450 МПа

SS-150= 300 МПа

11) K – коэффициент податливости опор;

Для опор с высокой жесткостью можно принять К1’=К3’=K1”=K3”=0.

12) B2, B4 – углы наклона зубьев зубчатых колес. Для прямозубых колес B2 = B4 = 0.

13) Ф2, Ф4 – угол между осью OX и линией центров зубчатых пар. Ф2, Ф4 указывается со знаком минус, если угол отсчитывается по часовой стрелки.

Снимаем величины с расчетной схемы: Ф2 = 219°24’.

Анализ полученных результатов. В первую очередь оценивается суммарный прогиб валов под колесом 2 и 4:

;

.

гдеF2 и F4 – прогиб под колесом, приводящим вал в движение и колесом, передающим движение на следующий вал соответственно;

F2P, F2T, F4P, F4T – составляющие прогибов, получаемые по программе.

Должны удовлетворятся следующие условия:

,

где m2, m4 – модули зубчатых колес 2, 4.

Далее оцениваем коэффициенты запаса прочности с учетом действия касательных и нормальных напряжений обозначенных N2 и N3. Должно выполнятся условие:

N2 ³1,5…2,5

N3 ³1,5…2,5.

Выполним проверку для шестого вала:

Условия по прогибу следующие:

 мм;

 мм.

Прогиб под колесом 2:

,

F2P = 0,007254;

F2T = - 0,000025.

 мм.

,

F4P = -0,007191;

F4T = 0,000552.

 мм.

Таким образом

0,0073  0,06;

0,0072  0,06.

Условие по прогибу выполняется. Сравниваются коэффициенты запаса в опасных сечениях:

,

.

Коэффициенты запаса удовлетворяют требованиям

Выполним проверку для девятого вала:

В первую очередь оценивается суммарный прогиб валов под колесом 2 и 4:

;

.

гдеF2 и F4 – прогиб под колесом, приводящим вал в движение и колесом, передающим движение на следующий вал соответственно;

F2P, F2T– составляющие прогибов, получаемые по программе.

Должны удовлетворятся следующие условия:

,

где m2– модули зубчатых колес 2.

Далее оцениваем коэффициенты запаса прочности с учетом действия касательных и нормальных напряжений обозначенных N2 и N3. Должно выполнятся условие:

N2 ³1,5…2,5

N3 ³1,5…2,5.

Выполним проверку для шестого вала:

Условия по прогибу следующие:

 мм.

Прогиб под колесом 2:

,

F2P = 0,007254;

F2T = -0,000025.

 мм.

Таким образом

0,0073  0,06.

Условие по прогибу выполняется. Сравниваются коэффициенты запаса в опасных сечениях:

.

Коэффициенты запаса удовлетворяют требованиям

Расчет шпиндельного узла

Определение вылета консоли шпинделя

По технической литературе [9] , исходя из максимального диаметра сверления, по ГОСТ 25557-82 выбираем 4 конус Морзе. По ГОСТ 2848-75 выписываем для данного конуса Морзе основные геометрические размеры конца шпинделя: вылета консоли – а и диаметра переднего конца шпинделя – D1:

Для 4 конуса Морзе D1=60мм, а=188.

Определение жесткости шпинделя

По указанию преподавателя принимаем жесткость шпинделя jшп=20Н/мкм.

Определение диаметра шпинделя под передней опорой

По номограмме [7] ориентировочно определяем оптимальный диаметр шпинделя dопт и коэффициент расстояния между опорами Копт. При жесткости шпинделя jш = 20 Н/мкм и вылете консоли а = 188 мм, Копт = 2,5; dопт = 50 мм.

Расстояние между опорами шпинделя определим из соотношения:

 мм.

Выбор подшипников

По стандарту норм точности и жесткости [9] определяем радиальное биение шпинделя: Δ = 6 мкм.

мкм.

Схема биения шпинделя (векторы биения опор направлены в разные стороны)

Рисунок 6

Допускаемое радиальное биение подшипников передней опоры можно определить по формуле:

,

Где Δ – допускаемое радиальное биение переднего конца шпинделя, Δ = 6 мкм;

а – вылет консоли шпинделя, а = 188 мм;

b – расстояние между опорами шпинделя, b = 470 мм;

 мкм.

Допускаемое радиальное биение подшипников задней опоры:

,

.

По радиальному биению дорожки качения внутреннего кольца подшипника [15] подбираем класс точности подшипников:

– для передней опоры – класс точности 2, δА = 2,5 мкм;

– для задней опоры – класс точности 4, δВ = 5 мкм.

Поскольку точность подшипника в передней опоре меньше требуемой, необходимо применить специальную сборку. Для этого измеряется биение всех подшипников шпинделя, в месте максимального биения ставится отметка на торце кольца. Шпиндель собирают так, чтобы векторы биения в опорах были направлены в одну и ту же сторону.

Схема биения шпинделя (векторы биения опор направлены в одну сторону)


Рисунок 7

В этом случае биение можно определить по формуле:

,

гдеδА – радиальное биение подшипников передней опоры, δА = 2,5 мкм;

δВ – радиальное биение подшипников задней опоры, δВ = 5 мкм;

mА – число подшипников в передней опоре, mА = 3;

mВ – число подшипников в задней опоре, mВ = 2;

а – вылет консоли шпинделя, а = 188 мм;

b – расстояние между опорами шпинделя, b = 470 мм;

мкм.

Полученное биение не превышает допустимой погрешности опор.


Информация о работе «Расчет технических параметров станков»
Раздел: Промышленность, производство
Количество знаков с пробелами: 28643
Количество таблиц: 3
Количество изображений: 7

Похожие работы

Скачать
31384
14
0

... 29,37 Задание к курсовому проекту можно сформулировать следующим образом: 1.         Рассчитать основные параметры переменно-поточной линии, которую предполагается внедрить на участке крупносерийного производства поршневых колец. 2.         Разработать и построить графики-регламенты работы поточной линии для последовательной обработки в течение месяца деталей трех наименований. 3.         ...

Скачать
53428
4
0

... , путем сохранения и увеличения конкурентоспособности, более рационального использования производственных мощностей и возможностей персонала. (6, стр.202) 1.6 Направления совершенствования технической подготовки производства    Цикл возникновения идеи до организации выпуска изделий потребителям не должен превышать трех лет для самых сложных образцов техники. Более длительные сроки приведут к ...

Скачать
85912
19
23

... и станции механизма уравновешивания, л/мин Г48–83 10…45 10…30 26   2.4 Техническое описание УЧПУ 2Р22   Назначение Устройство числового программного управления 2Р22 предназначено для управления металлообрабатывающими станками. По защищенности от воздействия окружающей среды, устройство предназначено для работы в механических цехах машиностроительных заводов в ...

Скачать
169417
2
16

... ряде прикладных программ. Сферы применения Лиспа многообразны: наука и промышленность, образование и медицина, от декодирования генома человека до системы проектирования авиалайнеров. 3. Технологическая реализация системы подготовки обработки детали станка с ЧПУ 3.1 Описание кодов программного модуля Любой проект в Delphi состоит из нескольких частей (набора файлов, каждый из которых ...

0 комментариев


Наверх