2.2 РАСЧЕТ ПЕРЕДАЧИ РЕДУКТОРА НА КОНТАКТНУЮ ВЫНОСЛИВОСТЬ

Так как в задании нет особых требований в отношении габаритов по таблице 3.3 [1, c.34] принимаем для шестерни сталь 45 улучшенную с твердостью НВ 230, для колеса – сталь 45 улучшенную с твердостью НВ 200.

Допускаемые контактные напряжения определим по формуле 3.9 [1, c.33]:

 (3.9 [1, c.33]):

где: σHlimb – предел контактной выносливости при базовом числе циклов.

По таблице 3.2 [1, c.34] предел контактной выносливости для углеродистых и легированных сталей с твердостью поверхностей зубьев менее НВ 350 и термообработкой (улучшение) находим по формуле:

σHlimb = 2.HB + 70;

КHL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора, принимаем значение КHL = 1; [n]H = 1,15.

Тогда расчетные контактные напряжения

Вращающий момент на валу шестерни

М1=52,3 Н*м

Вращающий момент на валу колеса

М2=201,8 Н*м

KHb - коэффициент, учитывающий неравномерность нагрузки по ширине венца 3.1 [1, с.32] для сталей с твердостью HB<350: KHb = 1,25;

Принимаем коэффициент ширины венца по межосевому расстоянию ybа =b/aω= 0,4.

 Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев

 (3.8 [1,с.26])

Принимаем u=5.

Ближайшее стандартное значение аω= 130 мм.

Нормальный модуль зацепления

mn=(0.01ч0.02) aω=(0.01ч0.02)130=1.3ч2.6

принимаем mn=2мм

Примем предварительный угол наклона зубьев β=30° и определим число зубьев шестерни и колеса

 число зубьев шестерни

Примем z1=19мм тогда z2= z1*u=19*5=95

Уточненное значение угла наклона зубьев

β=28°53`

Определим основные размеры шестерни и колеса: диаметры делительные:

Проверка:

 


Внешние диаметры шестерни и колеса по вершинам зубьев

ширина колеса

ширина шестерни

Определим коэффициент ширины шестерни по диаметру:

окружная скорость колес и степень точности передачи

при такой скорости следует принять 8 степень точности.

Для проверки контактных напряжений определяют коэффициент нагрузки:

где: КHb - коэффициент, учитывающий распределение нагрузки по длине зуба, при симметричным расположении колес и твердости HB≤350 [1, табл.3.8] КHb = 1,06;

КHa - коэффициент, учитывающий распределение нагрузки между зубьями, [1, табл.3.4] КHa= 1,07;

КHv - коэффициент, учитывающий динамическую нагрузку, для шевронных и косозубых колес при v £ 5 м/с, [1, табл.3.6] КHv= 1,0;

Проверяем контактные напряжения по формуле

 (3.6 [1,ст26])

Условие прочности зубьев при проверке на контактную выносливость выполняется.

Определим силы, действующие в зацеплении:

Окружная для шестерни и колеса:

Радиальная для шестерни и колеса:

Проверка зубьев на выносливость по напряжениям изгиба [1,3.31]

Формула для проверочного расчета зубьев цилиндрической прямозубой передачи на изгиб имеет вид (формула 3.31 [1, c.43]):


 ( 3.25 [1, c.38])

где: P-окружная сила действующая в зацеплении

KF – коэффициент нагрузки.

ΥF – расчетное напряжение зубьев при изгибе.

Yβ– коэффициент введен для компенсации погрешности.

KFа – коэффициент учитывающий неравномерность распределения нагрузки между зубьями.

b – ширина венца зуба колеса, b = 52 мм.

mn - окружной модуль зуба, mn = 3,57;

КF = KFβ . KFv

где: KFβ – коэффициент концентрации нагрузки, учитывающий неравномерность распределения нагрузки по длине зуба.

По таблице 3.7 [1, c.43], ГОСТ 21354-75 принимаем для консольно-расположенных относительно опор зубчатых колес, твердости поверхности колес НВ ≤ 350, значению  значение KFβ = 1,38;

KFv – коэффициент динамичности, учитывающий динамическое воздействие нагрузки. По таблице 3.8 [1, c.43], для косозубых передач и передач с круговыми зубьями, принимая во внимание то, что для конических передач следует выбирать коэффициенты на 1 степень точности больше (8-й степенью точности изготовления колес), твердости поверхности колес НВ ≤ 350 и окружной скорости  принимаем значение KFv = 1,3.

КF = 1,16. 1,2 = 1,392

YF – коэффициент, прочности зуба по местным напряжениям в зависимости от zn. Выбираем по ГОСТ 21354-75 значения YF из стандартного ряда для шестерни и колеса [1, c.35].

Для шестерни:


Для колеса:

При этом YF1 = 3,84, YF2 = 3,60 [1, c.42].

[σ]F – предельно допускаемое напряжение при проверке зубьев на выносливость по напряжениям изгиба. По формуле

 (3.24 [1, c.36])

где: σ0Flimb – предел выносливости при отнулевом цикле изгиба. По таблице (3.9[1, c.37]) для стали 45 с термообработкой улучшением и твердостью поверхности колес НВ ≤ 350 принимаем значение σ0Flimb = 1,8 НВ.

для шестерни: σ0Flimb1 = 1,8 . 230 = 415 H/мм2;

для колеса: σ0Flimb2 = 1,8 . 200 = 360 H/мм2;

[nF] – коэффициент запаса прочности.

[nF] = [nF]' . [nF]''

где: [nF]' – коэффициент нестабильности свойств материала зубчатых колес, по таблице (3.9 [1,c.37]) для стали 40Х с термообработкой улучшением и твердостью поверхности колес НВ ≤ 350 принимаем значение [nF]' = 1,75;

[nF]'' – коэффициент способа получения заготовок зубчатого колеса [1, c.44], для поковок и штамповок [nF]'' = 1. [nF] = 1,75 . 1 = 1,75.

Найдем предельно допускаемые напряжения [σF] и отношения [σF]/YF при расчете зубьев на выносливость: для шестерни:

для колеса:

Меньшее значение отношения [σF]/YF получено для колеса, следовательно проверочный расчет проводим для зубьев колеса. Определим коэффициент Ybи KF

Условие прочности зубьев при изгибе выполнено.



Информация о работе «Редуктор для привода ленточного транспортера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 24513
Количество таблиц: 4
Количество изображений: 34

Похожие работы

Скачать
42214
6
8

... с синхронной частотой вращения 750 об/мин. 2. Кинематический и энергетический расчёт привода 2.1 Кинематический расчёт Требуемое передаточное число привода при принятом электродвигателе: Разобьём передаточное число привода между редуктором и ремённой передачей. Примем: передаточное число ремённой передачи ирп = 3,55, тогда передаточное число редуктора: Частота вращения ...

Скачать
41824
8
3

... Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки. Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75. Принимаем муфту МУВП 250-40-1 У3 ГОСТ 21424-93. Номинальный крутящий момент Мкр., Н×м = 250 Частота ...

Скачать
31209
18
14

пени редуктора: об/мин 1.10 Определяем частоту вращения вала колеса промежуточной ступени двухступенчатого редуктора: об/мин 1.11 Определяем частоту вращения тихоходного вала: об/мин 1.12 Определяем мощность на валу электродвигателя:  Вт 1.13 Определяем мощность на быстроходном валу редуктора:  Вт 1.14 Определяем мощность на промежуточном валу редуктора: Вт 1.15 ...

Скачать
27611
6
11

... привода, будет использоваться втулочно-пальцевая муфта (ГОСТ 20884-93). Муфта выбирается по диаметру вала и по величине расчетного момента , где k – коэффициент, учитывающий эксплуатационные условия, для ленточных транспортеров при нагрузке спокойной – k = 1.5 (табл. 9.3, стр. 172, /8/). Рисунок 9-МУВП Основные параметры МУВП Таблица 5 .Основные параметры МУВП Т, Н×м d, мм ...

0 комментариев


Наверх