2.6 Подбор и расчет шпонок
Для соединения валов деталями передающими вращение применяют главным образом призматические шпонки стали 45 стали 6. Принимаем при проектировании шпонки призматические со скругленными торцами. Размеры сечений шпонок, пазов и длины шпонок берем по СТЭВ 189-75
определяем напряжение смятия и условие прочности:
(6.22 [1, с.102])
где: М – вращающий момент на валу, Н·мм;
d – диаметр вала в месте установки шпонки, мм;
h – высота шпонки, мм;
l – длина шпонки, мм;
b – ширина шпонки, мм;
t1 – глубина паза вала, мм;
[sсм] – допускаемое напряжение смятия, при стальной ступице (100¸200) Н/мм2, при чугунной ступице (50¸70) Н/мм2.
Ведущий вал:
Диаметр вала dв1 = 38 мм, М1 = 52,3 Н.мм,
Шестерню выполняем за одно целое с валом
Рассчитываем шпонку под полумуфту
По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 10х8х50 мм, глубина паза t1 = 5 мм. При длине ступицы полумуфты МУВП 58 мм.
Условие прочности выполняется.
Ведомый вал:
Рассчитываем шпонку под полумуфту
Диаметр вала dв2 = 45 мм, М2 = 201,8 Н.мм,
По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 10х8х74 мм, глубина паза t1 = 5 мм, t2 =3.3 мм. При длине ступицы полумуфты МУВП 82 мм.
Условие прочности выполняется.
Шпонки под зубчатое колесо
Диаметр вала dК2 = 50 мм, М2 = 201,8 Н.мм,
По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 14х9х50 мм, глубина паза t1 = 5,5 мм, глубина паза на колесе t2 = 3,8 мм. При длине ступицы полумуфты МУВП 60 мм.
Условие прочности выполняется.
2.7 УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ
Уточнённый расчёт состоит в определении коэффициентов запаса прочности S для опасных сечений и в сравнении их с допускаемым значением Прочность соблюдена при n > .
Ведущий вал.
По сколько при конструировании диаметры вала шестерни были увеличены по сравнению с расчитаными для соединения её муфтой с валом электродвигателя, по этому уточненный расчет вала производить нет смысла.
Ведомый вал.
Материал вала сталь 45 термическая обработка – нормализация.
Диаметр заготовки до 70мм среднее значение
Предел выносливости при симметричном цикле изгиба
Предел выносливости при симметричном цикле касательных напряжений
Сечение А-А. Концентрация напряжения обусловлена наличием шпоночной канавки /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.
Изгибающий момент в горизонтальной плоскости
Изгибающий момент в вертикальной плоскости
Суммарный изгиб моментов в сечении А-А
Момент сопротивления изгибу сечения нетто при d=50мм, b=16, t1=10
Момент сопротивления кручению сечения нетто
Амплитуда и среднее напряжение цикла касательных напряжений
Амплитуда нормальных напряжений изгиба
Коэффициент запаса прочности по нормальным напряжениям
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности для сечения А-А
Сечение К-К. Концентрация напряжения обусловлена посадкой подшипника с гарантированным натягиванием /, , [1, таб.8.8]; [1, стр.163 и 166]
Изгибающий момент
Осевой момент сопротивления при d=45мм.
Полярный момент сопротивления
Амплитуда и среднее напряжение цикла касательных напряжений
Амплитуда нормальных напряжений изгиба
Коэффициент запаса прочности по нормальным напряжениям
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности для сечения К-К
Сечение Л-Л. Это сечение при передачи вращающего момента от ведомого вала через муфту.
Концентрация напряжения обусловлена переходом от ш 45мм к ш38мм /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.
Внутренние силовые факторы те же, что и для сечения К-К
Осевой момент сопротивления сечения при d=38мм.
Полярный момент сопротивления
Амплитуда и среднее напряжение цикла касательных напряжений
Амплитуда нормальных напряжений изгиба
Коэффициент запаса прочности
Результирующий коэффициент запаса прочности для сечения Л-Л
Сечение Б-Б. Концентрация напряжения обусловлена наличием шпоночной канавки /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.
Изгибающий момент
Момент сопротивления изгибу сечения нетто при d=38мм, b=10мм, t1=5мм
Момент сопротивления кручению сечения нетто
Амплитуда и среднее напряжение цикла касательных напряжений
Амплитуда нормальных напряжений изгиба
Коэффициент запаса прочности
Коэффициент запаса прочности
Результирующий коэффициент запаса прочности для сечения Б-Б
Результаты поверки сводим в таблицу:
Таблица 4.
Сечение | А-А | К-К | Л-Л | Б-Б |
Коэффициент запаса S | 9.39 | 5,05 | 2.9 | 3.18 |
... с синхронной частотой вращения 750 об/мин. 2. Кинематический и энергетический расчёт привода 2.1 Кинематический расчёт Требуемое передаточное число привода при принятом электродвигателе: Разобьём передаточное число привода между редуктором и ремённой передачей. Примем: передаточное число ремённой передачи ирп = 3,55, тогда передаточное число редуктора: Частота вращения ...
... Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки. Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75. Принимаем муфту МУВП 250-40-1 У3 ГОСТ 21424-93. Номинальный крутящий момент Мкр., Н×м = 250 Частота ...
пени редуктора: об/мин 1.10 Определяем частоту вращения вала колеса промежуточной ступени двухступенчатого редуктора: об/мин 1.11 Определяем частоту вращения тихоходного вала: об/мин 1.12 Определяем мощность на валу электродвигателя: Вт 1.13 Определяем мощность на быстроходном валу редуктора: Вт 1.14 Определяем мощность на промежуточном валу редуктора: Вт 1.15 ...
... привода, будет использоваться втулочно-пальцевая муфта (ГОСТ 20884-93). Муфта выбирается по диаметру вала и по величине расчетного момента , где k – коэффициент, учитывающий эксплуатационные условия, для ленточных транспортеров при нагрузке спокойной – k = 1.5 (табл. 9.3, стр. 172, /8/). Рисунок 9-МУВП Основные параметры МУВП Таблица 5 .Основные параметры МУВП Т, Н×м d, мм ...
0 комментариев