1.1 Молоко як сировина

Як вже було сказано, в сироварінні використовується молоко різних видів ссавців, при цьому його склад розрізняється не тільки у тваринних різних видів, але і у тварин одного вигляду і навіть однієї породи. Крім того, виробництво сиру залежить від змісту не тільки основних компонентів (жиру, білка, лактози і золи), але і від складових їх мікрокомпонентів (жирні кислоти, казеїн, Альбумін, глобуліни і ін.). Кількісний зміст основних компонентів коров'ячого молока представлений в табл. 5.1; аналогічну таблицю можна скласти для молока інших видів тварин.

Коливання складу молока

Якість (склад) молока, використовуваного для виробництва сира, визначається видом ссавця. Середній склад молока різних видів тварин приведений в табл. 5.2, проте слід враховувати, що це усереднені дані, відмінності складу молока тварин навіть усередині одного вигляду можуть бути достатньо значними (див. табл. 5.3). Крім того, склад молока в значній мірі залежить від способів селекції тварин (тобто чисті або схрещені породи), а також міняється під впливом таких чинників, як здоров'я тваринне, стадія лактації, клімат, вік і вид кормів. Якщо протягом всього року використовується один стандартний процес виробництва сира, то сезонні відмінності у складі молока можуть створювати певні труднощі. Такі компоненти сирного згустка як жир, мінеральні речовини і вода утримуються усередині казеїнової сітки, отже, для якості отримуваного сиру дуже важливе співвідношення жиру і казеїну. Якщо воно не збалансоване, сирне тісто може виявитися або дуже м'яким, або дуже твердим, не дивлячись на те що кількість вологи в згустку при виконанні виробничих процедур строго контролювалася. Для усунення щомісячних коливань змісту жиру і казеїну використовується нормалізація молока. Необхідність нормалізації підтверджується прикладом, приведеним на мал. 5.1 (для молока, вироблюваного в західних центральних графствах Великобританії, в рспюне виробництва сира чешир).

Хімічній склад сирого коров’ячого молока

Компоненті Місткість % Вміст компонентів
Жир 4.0

Трігліцеріді жирних кислот:

С4 – С18, С18:1,с18:2,с20:2,с20:3

Фосфоліпіді 0.05 Лецитин, кефалін, сфингомиелин
Білки 3.3

Козеіні %

а-козеїн

b-козеїн

g-козеїн

k-козеїн

Сивороточні білки %

b-лактоглобулін

a-лактоальбумін

імуноглобуліни

сивороточний альбумін

азотисті з’єднання

2.7

1.62

0.60

0.11

0.36

0.60

0.35

0.13

0.08

0.04

Лактоза 4.6
Мінеральні речовини 0.75 Фосфаті, цитрати, хлориди, сульфати кальція, магнія, натрія, калія, залізо, марганець, мідь, кобальт.
Вода 87
Пігменті Каротин, рибофлавін, ксантофілл
Єнзими Ліпазі, протеази, редуктази, фосфатази, лактопероксидази, каталаза, оксидаза
Вітаміні Жіророзчинні вітаміни (A, D, E, K)
Газі Кисень, азот, вуглець, аміак, сірководень.
Летючі компоненти По сторонні домішки – бензин, парафіни
Соматічні клітини Епітеліальні клітини, лейкоцити
Мікроорганізмі Бактерії звичайної мікрофлори вимені, по стороння мікрофлора (бактерії, дріжджі, грибкова плісень)
Домішки Насіння, солома, листя інсектициди, добрива, сечі вина, частини грунту.

Можна намалювати аналогічний графік зміни щомісячного складу молока, вироблюваного в інших регіонах; ці співвідношення варіюватимуть від одного регіону до іншого (див. мал. 5.2). Як вже згадувалося вищим, дуже важлива порода тварини; у табл. 5.4 приведено співвідношення жиру і казеїну для молока деяких популярних порід молочної худоби.

Співвідношення казеїну і жиру в молоці, отриманому в двох регіонах Великобританії: а) регіон традиційного сироваріння; б) регіон традиційного виробництва масла і сливок

Відносно визначення складу молока перед нормалізацією слід зазначити, що в масі зрілого сиру лактоза міститься в дуже малій кількості (за винятком м'якого сиру). Таким чином, хоча лактоза і складає велику частину сухого знежиреного молочного залишку (СОМО) і може піддаватися кількісним змінам, проте її зміст більш постійно, ніж зміст інших компонентів СОМО.

Проміжки між доїннями, особливо у разі високопродуктивних корів, можуть впливати як на співвідношення жиру і казеїну, так і на удій молока, тоді як раціон годування надає дія на певні компоненти молока. Особливо це стосується жиру, протеїну і солей, а деякі види кормів додають молоку не властиві йому присмаки (наприклад, часник, бур'яни, пивна дробина). Крім того, коли корови в квітні-травні перекладаються із стійлового на пасовищний зміст, відбуваються зміни не тільки кольору молока, але і складу ліпідів, а також зниження процентного змісту жиру. Багато подібних змін якості можна звести до мінімуму, змішуючи молоко від різних постачальників, хоча при цьому залишаться відмінності, викликані географічним положенням. Сировар може робити лише незначний вплив на ці зміни, проте може їх прогнозувати, використовуючи щорічні дані про склад молока.

Одним з результатів введення на фермах доїльних машин була кількість випадків запалення молочної залози, що почастішала. Використання для виробництва сиру маститного молока може погіршити синерезис згустка, а пізніше привести до виникнення пороків смаку сира. До нещастя, бувають випадки, коли дане захворювання охоплює все стадо постачальника. Маститне молоко характеризується зниженням виходу сира, що може бути викликане низьким змістом казеїну, але набагато серйозніші проблеми виникають, коли ветеринар або фермер використовують медикаментозне лікування корів, продовжуючи постачання молока на сироварне підприємство. Хоча в багатьох країнах існують урядові норми з продажу молока від корів, одержуючих медикаментозні препарати, цей факт не завжди піддається контролю. Антибіотики і речовини хіміотерапій, що вводяться у вим'я у вигляді ін'єкцій, виявляються в молоці протягом декількох доїнь після введення. Використання такого молока затримує зростання молочнокислих бактерій, необхідних для процесу виробництва сира. Крім того, деякі інші препарати (перорально, що навіть даються) можуть бути присутніми в молоці у вигляді домішки впродовж достатнього тривалого періоду. Щоб розбавити невелику концентрацію антибіотика зазвичай потрібне велике кількості молока (на 90 000 - 135 000 л). Іноді, щоб виграти час для проведення тесту на наявність антибіотиків (наприклад, тест Дельво). фермери використовують для розбавлення вечірній надій молока, але сучасні тести дають можливість сироварові контролювати склад молока протягом 5-10 мін, завдяки чому кількість антибіотиків, що поступають на мировиробничі підприємства разом з молоком, повинна звести до мінімуму.

Не дивлячись на те що найбільше значення для сировара має вміст в молоці основних компонентів (жир, протеїн, мінеральні речовини і вода), успіх сироваріння часто залежить від їх мікроскладу. Далі приводиться короткий опис складу і структури жиру і білків, необхідне для розуміння процесу формування сирної маси і її здібності до утворення консистенції, смаку і запаху сира.

Молочний жир

У табл. 5.1 приведений докладний склад молока як сировини для сироваріння, проте для деяких компонентів потрібна докладніша інформація, особливо якщо доводиться брати до уваги сезонні коливання якості молока і розробляти нові різновиди сира.

Наприклад, жир молока є джерелом компонентів, які частково відповідальні за смак і запах, а також за консистенцію зрілого сиру. Ці властивості залежатимуть не тільки від різновиду сира, але і від складу і фізичних характеристик самого жиру. Сир, вироблений без жиру, зазвичай висихає і набуває твердої консистенції, а коли він молодий, то володіє м'яким смаком і не розвиває типовий «сирний» смак. Тим часом навіть 1% жиру в молоці надає сиру основному смаку, якого не буває за відсутності жиру. Встановлено, що знежирене (сепароване) уручну молоко містить від 1 до 1.75% жиру: деякі види сирів виробляються з такого типу молока. Механічно сепароване молоко (0.1-0,2% жиру) використовується для отримання сирної маси, яка зазвичай не має сильного кисломолочного смаку (наприклад, сир), або набуває інгредієнтів що додаються (наприклад, сирий котедж з травами або із сливками).

Жир в молоці присутній у вигляді водної суспензії маленьких жирових кульок, діаметр яких залежить від породи тварини і для коров'ячого молока складає від 0.1-22 мкм в діаметрі. Здатність жиру вбудовуватися в згусток пов'язано не тільки з кількістю жиру, але і з його складом, а також з складом що оточує жирові кульки оболонки. Наприклад, склад жиру впливає на його температуру плавлення, що може викликати відділення рідкого жиру при обробці згустка. Розплавлені крупні жирові кульки легко випресовуються із згустка і переходять в сироватку при температурі близько 25-26 °С або заповнюють порожнечі, додаючи сирному тесту маслянистість і нерівномірність забарвлення. Багато сироварів вважають за краще використовувати молоко з дрібними жировими кульками (молоко корів айрширскої і гольштейнскої порід), які легко вбудовуються в сирний згусток. У табл. 5.5 приведений середньорічний зміст основних жирних кислот і точки плавлення молочного жиру молока двох порід худоби.

Унаслідок відмінності температур плавлення жиру його склад може робити більший вплив на структуру сира, чим розмір жирових кульок.

Глобули молочного жиру є складним ефіром гліцерину і трьох мирних кислот, тобто є триглицеридами. створюючими декілька кристалічних форм. Теоретично жирні кислоти можуть утворювати величезну кількість триглицеридів (близько 200 000). тому молочний жир плавиться при температурі 28-33 °С і отвердіває (застигає) при 19-24 °С. Для повного твердіння жиру потрібний до 4 ч. У пресованому сирі з високою температурою другого нагрівання деяка кількість жиру може залишатися в розплавленому стані, коли сир вже покрився цвіллю. Така повільна тепловіддача може утруднити дію сичужного ферменту.

Хоча молочний жир складається в основному з триглицеридів, в нім в невеликій кількості присутні ди- і моногліцериди. а також вільні жирні кислоти. Трігліцеріди — неактивні хімічні сполуки, проте вони повністю або частково розщеплюються під дією ферментів. Разом з тим тригліцериди є розчинниками жиророзчинних компонентів молока, таких як фосфоліпіди, це реброзиди. стериоли (естерифікований холестерол). пігменти (каротиноїди) і антиоксиданти (токофероли), які можуть бути присутніми в жирових кульках разом з альдегідами, кетоном. лактонами і іншими метаболитами. Деякі з цих компонентів впливають на смак сиру і можуть вивільнятися під час ліполізу жиру.

Як можна бачити в електронний мікроскоп, жирові глобулы мають шарувату структуру. Очевидно, що при охолоджуванні спочатку отвердіває жир, що поміщається в центрі глобулы і має вищу температуру плавлення, тоді як жир з нижчою температурою плавлення розташовується в поверхневому шарі.

Процентний розподіл жирних кислот у складі триглицеридів різний; в середньому близько 40% молочного жиру містить олеїнову і пальмітинову кислоти і кислоти з коротшим ланцюгом в положенні 2 тригліцериди (наприклад, олео-каприно-пальмитин). Крім того, можуть бути присутніми деякі змішані дигліцериди (наприклад, пальмитино-олеин) і повністю відсутні триглицериды і триолеинового або трипальмитинового типів.

Враховуючи значення жирних кислот для виробництва сира, слід приділити увагу їх хімічній будові. Жирними кислотами є не розгалужені ланцюги атомів вуглецю, сполучених між собою одинарними зв'язками. Атоми водню також утримуються у вуглецевому ланцюжку за допомогою одинарних зв'язків. Так, бутанова (масляна) кислота має вуглецевий ланцюжок, що складається з чотирьох атомів вуглецю з приєднаними до них атомами водню: СН3(СН2)2СООН.

Якщо зв'язки між атомами вуглецю складніші (тобто подвійні), то про кислоту говорять, що вона ненасичена і може вступати в реакції по місцю подвійного зв'язку. Олеїнова, лінолева і ліноленова кислоти, присутні в молочному жирі, мають наступні формули:

СН3(СН2)7СН-СН(СН2)7СООН (олеїнова кислота; один подвійний зв'язок). СН3(СН2)4СН-СНСН2СН-СН(СН2)7С00Н (лінолева кислота; два подвійні зв'язки).

СН3(СН2) СН-СН-СН2СН-СН-СН2-СН-СН(СН)7С00Н (ліноленова кислота; три подвійні зв'язки).

Всі вказані вище кислоти мають нерозгалужену структуру: жирні кислоти з розгалуженою структурою присутні в молочному жирі в дуже невеликих кількостях.

Згірклість (згірклий смак) — термін, часто використовуваний для вказівки присутності вільних летючих жирних кислот, чаші всього масляною. Ліполіз незахищених жирів вивільняє з гліцеридів окремі жирні кислоти; енергійне перемішування або гомогенізація можуть забезпечити доступ до вільного жиру ліполітичних ферментів. Окислення фосфоліпідів, які зазвичай адсорбуються оболонками жирових кульок, викликає в молоці окислений або картонний присмак, що часто помилково приймається за згірклий присмак.

Перемішування або гомогенізація витісняє ці ліпіди з оболонки кульок в сироватку і таким чином запобігає появі окисленого смаку, але те ж саме переміщення може сприяти розвитку сильнішого згірклого смаку. При виробництві деяких італійських сирів, для яких типовий згірклий смак, його можна навмисно підсилити, додаючи ліпазу.

Виникненню згірклості сприяє вивільнення жирних кислот під дією активних ліполітичних ферментів (ліпаз). Присутність в молоці невеликої кількості ліпаз є нормальною, проте вони володіють низькою тер-моустойчивостью, у зв'язку з чим їх активність нижча за активність ліпаз, що виробляються мікроорганізмами. Кількість мікробних ліпаз залежить від фази зростання організму, що продукує їх, ферменти, що проте виробляються мікроорганізмами, часто виявляються стійкішими до нагрівання, чим сам мікроорганізм. Наприклад, велика частина ліпаз психротрофних мікроорганізмів витримує нагрівання молока до 72 °С протягом 15 с.

Активність ферментів при гідролізі жиру на жирні кислоти і гліцерин залежить від того, чи мають ферменти доступ до певних жирних кислот, оскільки на активність ліпази впливає розташування жирної кислоти в гліцериді. Наприклад, масляна кислота, що часто знаходиться в положенні 1 (або позиції а) три-глицерида. відщеплюється ліпазами швидше, ніж кислоти з довшим вуглецевим ланцюгом. Проте присутність кислот з довшими ланцюгами — пальмітиновою (С16) і стеариновою (С18), важливо тим, що вони пом'якшують інтенсивність розвитку інших присмаків. Отже, співвідношення кількостей жирних кислот в різних видах молока значно впливає на смак сиру.

У табл приведений склад жирних кислот (зокрема, стеариновою С18 і олеїновою С13). що впливають на температуру плавлення молочного жиру. Оскільки жирні кислоти з довшими вуглецевими ланцюгами поступають в молоко головним чином з корму (тоді як жирні кислоти з коротшими ланцюгами виробляються в рубці), на склад молочного жиру впливає раціон тварини. Наприклад, годування льняною макухою приводить до отримання молока з м'якшим жиром, тоді як годування травою — з твердішим. Таким чином, вирішальне дію на кількісний склад жирних кислот в коров'ячому молоці надають раціон і індивідуальні особливості тварини. Крім того, навіть при однаковому живленні спостерігаються істотні відмінності між цим складом у різних видів тварин. На смак готового сиру впливає присутність жирних кислот зі своїм власним смаком (наприклад, масляна кислота). У козиному молоці міститься істотне количе-ство капронової, каприлової і капринової кислот, тому сирий, вироблений з цього молока, має пікантний гострий смак, типовий для козиного молока. У овечому молоці також присутня підвищена кількість капринової кислоти, але що виходить в результаті сир не має настільки інтенсивного гострого смаку.

Ядро жирової кульки оточене ліпопротеїновою мембраною (так званою оболонкою жирової кульки), і, якщо оболонка ослаблена унаслідок денатурації його протеїнів під впливом надлишків кислоти, мембрана може ушкоджуватися або прориватися, і при нагріванні з неї може витікати жир. Якщо це відбувається, жир стає легко доступний для гідролізу і подальшого окислення. Щоб підсилити активність ліполітичних ферментів і прискорити процес розщеплювання жиру і створення передумов для розвитку в сирі смаку і аромату, можна розщепнути жирові кульки до невеликих розмірів (діаметром 1-1,5 мкм) за допомогою гомогенізації. При цьому загальна площа оболонкового матеріалу зростає, і, хоча за рахунок протеїнів сироватки забезпечується побудова нових мембран, вони можуть бути тонше, ніж початкові оболонки.

Щоб прискорити ліполіз жирів і процес дозрівання із збереженням смаку і аромату, при виробництві сира з блакитними прожилками використовують гомогенізацію. При цьому гомогенізують тільки сливки (25% жирності), після чого їх змішують із знежиреним молоком. Якщо застосувати обробку високим тиском до фракції знежиреного молока, кінцевий сир може придбати тверду розсипчасту структуру, що несприятливо впливає на якість.

Окрім гомогенізації, до руйнування мембрани і (з великою вірогідністю) до витоку жиру може привести пошкодження оболонки за рахунок денатурування білкової фракції, викликаного низьким рівнем рН і високотемпературною обробкою молока. Вільні жирні кислоти, що утворюються при розщеплюванні такого жиру ферментами сироватки, можуть утрудняти коагуляцію молока, вступаючи в реакцію з казеїном і блокуючи частину білка, необхідного для утворення згустка. Так, в молоці, що зберігалося при низькій температурі, вільні жирні кислоти (лауринова. міристинова і пальмітинова) ослабляють або затримують процес коагуляції при 35 °C.

 

Зміна змісту жирних кислот в коров'ячому молоці

Жирні кислоти Коливання змісту. %
Бутанова (масляна) 2,7 -4.5
Капронова 1,3-2.2
Каприлова 0,9-2,9
Капринова 1,8-3,9
Лауринова 2,0-5,0
Міристинова 7,0-11,5
Пальмітинова 22,5-29,5
Стеаринова 7,0-14,2
Олеїнова 30,0-41,0

 

Склад жирних кислот в молоці різних тварин

Тварина

Зміст жирних кислот %

від загальної кількості
С4 С6 С8 С10 С12 С14 С16 С18 С18:1 Інші кислоти
Корова 2,9 2,2 1,1 3,0 2,7 9,0 25.0 13.8 33,0 7,3
Коза 3,1 2.8 3.0 10.1 6,0 12.2 27,2 27.5 25.6 3,7
Вівця 4,2 2,0 2.2 6.0 3.1 5.5 16,9 15,8 38,8 5,5
Буйвол 3,1 0,9 1,5 1.8 2.5 9.0 37,5 31,0 11.0 1.7

Примітка. С4— бутанова (масляна); С6 — капронова; С8 — каприлова; С10— капринова; С12, - лауринова; С14— міристинова; С16 — пальмітинова; С18— стеаринова; С18:1— олеїнова. Інші кислоти — кислоти, включаючи лінолеву і ліноленову.

Згідно останнім дослідженням, насичені жирні кислоти підвищують рівень холестерину в крові, що збільшує ризик серцево-судинних захворювань. У зв'язку з цим останніми роками з'явилася тенденція до збільшення кількості ненасичених жирних кислот в їжі. Не дивлячись на полеміку навколо цієї точки зору, був створений метод включення в раціон корів інкапсульованого ненасиченого масла, що впливає на якісний склад жирних кислот молока. Метод заснований на тому, що, завдяки захисному покриттю, масло не переробляється в травному тракті тварини і з'являється в молочному жирі. На жаль, ненасичена лінолева кислота швидко окислюється, що викликає необхідність відразу після доїння додавати в молоко антиоксиданти (наприклад, бутилгидроксианизол). Сирне тісто, виготовлене з додаванням такого молока, має м'яку консистенцію і слабкий смак. Проте проблема високого рівня вмісту в їжі насичених жирів існує, і дієтологи рекомендують, щоб вміст жиру в споживаній їжі не перевищував 25% від загальної кількості калорій.

Мінорні ліпіди

Група ліпідів. пов'язаних з жиром, хоча і присутній в дуже незначній кількості, роблять великий вплив на інші компоненти молока. Дана група ліпідів включає стеролы (тобто холестерол), цереброзиди і фосфо-липиды. Останні є найбільш поверхнево-активними з'єднаннями і включають лецитин і кефалін. Вони тісно взаємодіють з протеїнами, наприклад, утворюють ліпідну частину липопротеинов в оболонці жирової кульки. Вони майже нерастворимы у воді або жирі і мають тенденцію утворювати міцели на межі розділу води і жиру з полярними молекулами, зверненими до водної фази, і неполярними — до жирової фази. Від 50 до 90% загального числа фосфоліпідів міститься в оболонках жирових кульок; ця кількість залежить від різних чинників: інтенсивності перемішування, температури і рівня рН. Для фосфоліпідів характерна асоціація з молекулами протеїнів з утворенням унікального ліпопротеїнового слоя1, при цьому фосфоліпіди розташовуються між жиром і плазмою і захищають жир від дії молочної плазми. Під впливом різних чинників (особливо температури і кислотності) оболонка час від часу піддається змінам; при пошкодженні оболонки (наприклад, при перемішуванні) її відновлюють білки плазми.

Протеїни, присутні в зовнішніх шарах оболонки кульки, містять невелику кількість цинку, кальцію, заліза, магнію і міді. Існує також група ензимів (таких, як естерази і ліпази), пов'язаних з протеїнами, які відокремлені від молочного жиру оболонкою, але можуть вимиватися з непошкоджених жирових кульок. При енергійному перемішуванні оболонковий шар руйнується, що полегшує контакт ферментів і жиру, викликаючи його ліполіз.

Білки молока

Молочні білки діляться на дві основні групи: казенні, які знаходяться в молоці в колоїдному стані, і білки сироватки, присутні в плазмі в розчиненому стані.

Білки складаються з ланцюгів амінокислот, що часто мають спіральну структуру, яка визначає їх властивості і здатність вступати в реакцію. Для додання стабільності спіральній структурі окремі спіралі можуть з'єднуватися поперечними зв'язками, при цьому деякі білки еластичні і можуть скорочуватися, а інші — жорсткіші. Якщо білки денатуруються під впливом нагрівання або кислот, їх властивості змінюються, і вони менше піддається дії зовнішніх чинників. Поза сумнівом, змінити мікроструктуру компонентів молока, використовуваного для вироблення сира, можна лише трохи, але розгляд їх природи може допомогти в поясненні деяких труднощів, що виникають при виробництві сирів.

Казєїнни

Казеїн, основний білок молока, існує в молоці в основному у формі міцели. Міцела є комплексом, в який входить велика кількість казеїнових фракцій, що складаються з амінокислотних ланцюжків. Послідовність амінокислот в окремих фракціях казеїну розглядається багатьма авторами, зокрема, в роботі. До складу казеїнового комплексу входить близько 40% а-казеинов, 35% р-казеинов, 15% к-казеинов і 10% мінорних компонентів (15. 61 )2.

а-Казеїни зустрічаються в чотирьох варіантах залежно від породи тварини. У роботі приведені результати дослідження впливу генетичних варіантів молочних білків на щільність згустку, рівень рН і стійкість до нагрівання (особливо за наявності р-лактоглобуліна).

Варіант А а-казеїнів в коров'ячому молоці складається з 186 амінокислот, тоді як варіанти В, З і Про кожен з 199. Під час дозрівання сира с-казеїни може розщеплюватися на дрібніші з'єднання , кожне з яких має різний смак, залежний від кінцевої амінокислоти. У роботі висловлюється припущення, що фенилаланин як кінцева кислота викликає гіркоту. По номенклатурі 1984 р. а-казеїну складаються з аS, -и аS3-фракцнй. Головний компонент о-казеїну має п'ять генетичних варіантів (А, В, З, Про і Е), складається з 199 амінокислотних залишків і містить 8 фосфосеринових залишків. аS2-Казеїн містить 207 амінокислотних залишків, 2 залишки цистеррина. 10-13 фосфосеринових залишків. Розчинність казеїну дуже різна: к-казеїни растворимі при різних температурах і стійкі у присутності іонів кальцію, тоді як р-казеїн розчинимо при 4 °С, але тільки 0,2% його растворимі при 37 °С. У розчині кальцію 0,03% аз-казеїнів розчиняється при 4°С, але тільки 0,17% — при 37°С. Очевидно, що різна розчинність р-казеїну при різних температурах може грати важливу роль в коагуляції молока. Якщо молоко зберігається при низькій температурі (4 °С), р-казеїну може диссоціювати з казеїнового комплексу і при повторному нагріванні утворювати оболонку на поверхні міцел, утрудняючи коагуляцію молока за допомогою ензимів.

Р-казеїн складає 30-35% казеїнового комплексу, і його поліпептидний ланцюжок має 209 залишків амінокислот; різновиди р-казеїну: р-казеїн А, Р-казеїн В (Джерсе), р-казеїн Би (Зебу) і тип Е (Пьемонт). У роботах повідомляється про гіркі пептиди, що утворюються при розщеплюванні р-казеїна.

р-казеїни є частиною р-казеїнового ланцюга; існує щонайменше три варіанти у-казеїнів з трохи змінними ділянками ланцюгів. Мінорний (по старій класифікації) казеїн До, Т5в, 5 і Т5л вважаються ідентичними у-казеїнами. По номенклатурі 1984 р. у-казеїн містить з 29 по 209 амінокислотних залишків р-казеїна, у2-казеїн — з 106 по 209 залишків і у3-казеїн - з 108 по 209 амінокислотних залишків. Оскільки компоненти а,-казеїнових або Р-казєїнових ланцюгів відносно вільно виходять з складу казеїнових міцел і розчиняються, забезпечуючи «загальний казан» небілкового азоту, необхідного для розвитку бактерій, який також може служити як можливий попередник компонентів смаку і аромату.

к-Казеїн має тільки два варіанти — А і В і складає всього 11-15% казеїнового комплексу. Не дивлячись на невисокий вміст к-казеїна в міцелі, його присутність в молоці, призначеному для виробництва сира, надзвичайно важлива, оскільки всі його види володіють здатністю стабілізувати фракцію с-казеїну. У поліпептидному ланцюзі к-казеїна міститься 169 амінокислотних залишків, і, як інший казеїн. к-казеїн може розщеплюватися на коротші ланцюги. Важливою для сироваріння властивістю к-казеїна є те. що ензим реннген (хімозин) здатний розірвати його ланцюг між амінокислотними залишками в положенні 105 (фенилалл-нин) і 106 (метіонін). Дві частини, що утворюються при розщеплюванні к-казеїну. є нерозчинні параказен (амінокислоти з 1 по 105), який залишається пов'язаним з казеїновою міцелою, і розчинний вуглеводовмістний пептид (гликомакропептид; залишки амінокислот з 106 по 169).

Для виробництва сиру активно використовують козине і овече молоко. Дослідження відмінностей між казеїном цих типів молока, зокрема, вивчення хімічного складу а-казеїнів молока різних порід кіз показали, що слабкість згустка, утвореного при коагуляції козиного молока, пояснюється:

а) вищим рівнем змісту р-казеїну в порівнянні з коров'ячим молоком.

б) структурою а-казеїнів, що відрізняється. Хімічний склад казенне овечого молока вивчений менш детально.

Сироваткові білки

Молочна сироватка містить приблизно 0,6% сироваткових білків, з яких 0,3% складає Р-лактоглобулін, близько 0,07% — а-лактальбумін; крім того, присутні сироватковий альбумін і імуноглобуліни. Подібно до казеїну. сироваткові білки утворюють колоїдні розчини. Під впливом нагрівання р-лактоглобуліни піддаються агрегації і можуть вступати в реакцію з к-казеїном. що приводить до збільшення тривалості коагуляції. Окрім більш за ретельного час утворення згустка, взаємодія між р-лактоглобуліном і казеїном обумовлює отримання м'якшого згустка, який повільніше виділяє вологу. У роботі розглядаються властивості генетичних варіантів р-лактоглобуліну (Е, Р. З) молока великої рогатої худоби породи Балі (Бантенг).

Сироваткові білки не утворюють такий еластичний або здібний до ущільнення згусток, як казеїн, і тому сприяють збереженню вологи, що сприяє зростанню мікроорганізмів. У сироварінні сироваткові білки спочатку беруть участь в утворенні згустка, але, будучи розчинними, віддаляються разом з сироваткою при його розрізанні або дробленні. Білки, що залишилися, стають частиною сирного тесту і беруть участь в утворенні запасу амінокислот, забезпечуючий смак і аромат сира, а також є метаболитами для мікроорганізмів. Проте якщо молоко сиру концентрується методом ультрафільтрації, в згусток переходить велика частина сироваткових білків, що збільшує об'єм отримуваного продукту.

Молозиво і маститне молоко містять велику кількість сироваткових білків, які утрудняють видалення вологи із згустка.

Мінеральні речовини молока

Речовини, які зазвичай класифікуються як зольні речовини (зола) молока, мають надзвичайну важливість для виробництва сира. Зола містить велику кількість металів (калій, натрій, кальцій, магній, марганець, залізо, мідь, кобальт, цинк, хром і нікель) і неметалів (сіра. хлор, фосфор і йод). Останні зазвичай присутні у вигляді кислотних залишків (сульфати, фосфати і хлориди), а також у складі таких необхідних компонентів, як солі лимонної кислоти, що руйнуються в процесі озолення. У загальному випадку в коров'ячому молоці виявляється присутність близько 25 елементів, хоча наявність деяких з них залежить від раціону годування тварин.

Не дивлячись на те що багато хто з цих компонентів присутній в молоці у вельми невеликій кількості, вони надзвичайно важливі для ферментів і інших структур. Наприклад, кобальт входить до складу вітаміну В!2, цинк — в карбоангидразу, магній — в аргіназу, молібден — в ксантиноксидазу, залізо — в ксантиноксидазу і в лактопероксидазу. Хоча ці елементи необхідні для багатьох реакцій, що відбуваються в молоці і згустку, їх не можна розглядати як «добавки», оскільки їх кількість дуже низько.

Проте деякі солі молока мають величезну важливість для процесу виробництва сира, а кальцієві і магнієві солі фосфорної і лимонної кислот заслуговують особливої уваги. Хоча магній абсолютно не бере участь в утворенні міцел, він впливає на підтримку в молоці стійкої мінеральної рівноваги, а кальцій (у вигляді фосфату) входить в структуру казеїнового комплексу. Близько двох третин кальцію представлено у вигляді колоїдного розчину і одна третина — у вигляді дійсного розчину, хоча це співвідношення залежить від рівня рН і температури. Кількість кальцію, вступаючого в реакцію, складає менш однією десятою від загального його вмісту в молоці, а основна маса кальцію утворює комплекси з фосфатом, цитратом і казеїнами. Кількість доступного кальцію надає вплив на розмір казеїнових агрегатів, при цьому додавання хлориду кальцію перед внесенням сичужного ферменту збільшує розмір казеїнових міцел. З іншого боку, розбавлення молока водою до початку сычужного згортання може зменшити розмір міцел. У роботі показано, що іони кальцію грають велику роль в утворенні комплексів, чим іони магнію, калія або натрію.

Швидкість коагуляції під дією сычужного ферменту і щільність згустка зменшуються, якщо молоко нагрівається до температури вище 65°С; у роботі показаний вплив фосфату кальцію на синерезис сичужних згустків. Таким чином, на коагуляцію молока під дією сичужного ферменту роблять помітний вплив температура нагрівання і концентрація іонів кальцію. Якщо молоко, що зберігалося при низькій температурі (4 X), нагрівається до 35°С протягом 30 мин. час коагуляції наближається до звичайного. Молоко є полідисперсною системою, дисперсійне середовище якої представлене розчином лактози, деяких солей, розчинних протеїнів, розчинних жирних кислот, білків, вітамінів і амінокислот, тоді як дисперсні фази складаються з жирових кульок, казеїно-кальций-фосфатно-цитратних комплексів, фосфату кальцію і клітинних речовин (лейкоцитів і мікроорганізмів). В цілому система молока за нормальних умов знаходиться у відносно стабільній рівновазі, а висока буферна здатність спостерігається при рівні рН близько 7. Крім здатності утворювати з'єднання з солями молока, казеїн може розчинятися в слабокислих розчинах, таких як хлорид натрия молочна кислота за умов, що виникають в деяких типах сирного тесту під час пресування. Цей феномен впливає на процес «злипання» сирного зерна, що може додати сиру тверду текстуру або викликати збільшення утворення темних прожилків навколо макрозерен в деяких видах сирів.

Ферменти молока

Існує три головні джерела надходження ферментів в молоко: а) молоко в період секреції; б) мікроорганізми, що потрапляють в молоко під час його отримання (тобто мікроорганізми, що знаходяться в сосковому каналі); у) мікроорганізми, що потрапляють в молоко після доїння із стінок посуду і в процесі подальшої переробки. Деякі з цих мікробних ферментів зберігаються в молоці після загибелі і лізису кліток мікроорганізмів, і хоча присутні в дуже незначних кількостях, продовжують проявляти деяку активність протягом задоволеного тривалого часу.

З погляду біохімічної активності, пов'язаної з процесами травлення і ферментації їжі в рубці, недивно, що в молоці виявлено близько 40 ферментів. До основних ферментів відносять лактопероксидазу. рібонуклеазу, ксантиноксидазу. каталазу. альдолазу і лактазу, а також групи фосфатаз, ліпаз, естераз, протеаз, амілаз, оксидази і редуктаз.

Ліпази, пов'язані з оболонками жирових кульок, відрізняються від ліпаз плазми, які, як правило, залишаються в сироватці, за винятком пов'язуваних з казеїновими міцелами. Плазмові ліпази в молоці неактивні, поки не набувають активності в результаті гомогенізації і руйнування оболонок жирових кульок або після нагрівання, що вивільняє рідкий жир. Мембранні ліпази міцно пов'язані з оболонкою жирових кульок.

Ліполіз в молоці може прискорюватися при нагріванні охолодженого молока до температури вище 32 °С з подальшим охолоджуванням до точки застигання молочного жиру. внаслідок чого молоко швидше стає згірклим. Це може відбуватися, якщо тепле уранішнє молоко додають до холодного вечірнього молока, після чого охолоджують суміш до температури нижче 20°С. Подібна ситуація може спостерігатися при використанні великих танків для збору фермерського молока, якщо устаткування, що охолоджує, не відповідає прийнятим стандартам. Процес згіркнення молока в місцях з холоднішим кліматом (наприклад, в Шотландії. Скандинавії) може бути викликаний швидким прогоном теплого молока (з гарячим обдуванням) через вакуумні системи трубопроводів від доїльних апаратів в охолоджувачі. Аерація і збовтування молока у вакуумних системах викликають активізацію ліполітичних ферментів, сприяючих згіркненню. Крім того. поза сумнівом, що молоко окремих тварин може бути схильне до спонтанного згіркнення. але цей недолік можна усунути, змішавши його з молоком, не схильним до згіркнення.

Оскільки куховарська сіль знижує активність ліпаз, деякі сировари в призначене для зберігання молоко додають сіль. В деяких випадках додавання хлориду натрію до порції вечірнього молока в цілях контролю ліполізу виправдане, але сіль може робити негативний вплив на активність сичужного ферменту, а знижена швидкість коагуляції може приводити до отримання м'якого сирного згустка, що погано відокремлює вологу.

Деякі сировари, що спеціалізуються на виробленні італійських різновидів сирів (наприклад, пармезан), навмисно підсилюють ліполіз, щоб добитися смаку, характерного для певного вигляду; при цьому вони прагнуть уникати пастеризації молока, щоб звести до мінімуму втрату ліпаз. Деякі ліпази виробляються в молоці в результаті забруднення мікрофлорою, наприклад, псевдомонадами, мікрококами і бацилами; на ліполітичну активність впливають навіть стрептококу ці мікробних ліпази роблять негативний вплив на смак готового сиру. Виробники даного класу сирів як коагулянт найчастіше використовують сичужний порошок (суміш хімозину і пепсину), а не сичужний екстракт, оскільки він володіє вищою ліполітичною активністю.

В протилежність ліпазам кількість естераз в молоці невелика. Естерази відповідальні за деякі зміни ліпідів, але в дозріванні сиру грають незначну роль.

Навпаки, лужна фосфатаза є естеразою. яка каталізує гідроліз органічних фосфатів. Мабуть, цей фермент в значній мірі адсорбується оболонками жирових кульок. Оскільки при пастеризації він руйнується, ефективність теплової обробки молока контролюють пробої на фосфатазу. Кисла фосфатаза (тобто фосфамоноэстераза) також присутній в молоці. Вона стійка при температурі 96 °С, але її дія на молоко або згусток, мабуть, мінімально.

Ксантіноксидаза («фермент Шардінгера») каталізує окислення альдегідів, і тому цікавий для сироварів. Цей фермент є редуктазою, проявляє активність при температурі 75-80°С і перетворює нітрати на нітрит. Козине молоко, мабуть, не володіє подібним ферментним комплексом. Проте численні редуктази можуть проникати в молоко (а згодом — в згусток) разом із сторонніми мікроорганізмами.

Кількість пероксидази в молоці значно варіює. Вона сприяє виділенню кисню з пероксиду водню. Даний фермент витримує нагрівання до температури 80°С і використовується для контролю ефективності високотемпературної пастеризації молока. Деякі типи молока пероксидазу не містять або містять в невеликих кількостях.

На відміну від пероксидаз, сприяючих виділенню активного кисню, каталазу викликає розкладання пероксиду водню на воду і неактивний кисень. Молозиво і молоко від хворих тварин містять велика кількість каталази. що часто супроводжується присутністю великої кількості бактерій і лейкоцитів, що дозволяє виявляти маститне молоко шляхом підрахунку кількості соматичних кліток ( коцитов) що замінило пробу, що застосовувалася раніше, на каталазу. Каталаза використовується для знищення небажаних мікроорганізмів замість звичайної термообробки молока. Для повної инактивациї каталази необхідне нагрівання молока до 90-95°С, оскільки після інактивациї при звичайній пастеризації можлива її часткова реактивація. Під час коагуляції молока каталаза осідає разом з казеїном.

Протеази в молоці каталізують гідроліз зв'язків в ланцюгах амінокислот з утворенням пептидів і амінокислот. Хоча кількість цих ферментів в сирі невелика, вони роблять значний вплив на смак, консистенцію і навіть текстуру сира. Деякі з цих з'єднань беруть участь у формуванні аромату сира, особливо при їх розпаді до аміаку, наприклад, в сирі, що дозріває за участю цвілі. Оскільки протеази в молоці під впливом нагрівання до 75-85°С розпадаються, подальше зростання мікроорганізмів забезпечує необхідний для розщеплювання протеїнів запас протеаз і пептидази. Хоча велика частина цих ферментів переходить в згусток і бере участь в дозріванні сира, деякі втрачаються разом з сироваткою, приєднуючись до сироваткових білок.

У коров'ячому молоці лактаза бере участь в розщеплюванні лактози з утворенням глюкози і галактози, які придатніші для використання мікроорганізмами в молоці або згустку. На відміну від коров'ячого молока козине і молоко інших ссавців не містять лактази або містять її в незначній кількості.

Амілаза потрапляє в молоко з крові, у зв'язку з чим раніше використовувалася для виявлення мастита.

Активність більшості інших ферментів в молоці незначна, багато хто з них розпадається при звичайній тепловій обробці. Ферментні системи, необхідні для правильного дозрівання сира, утворюються такими, що ростуть в молоці після термообробки мікроорганізмами (тобто термостійкими видами і мікроорганізмами заквасок). Тим часом теплова обробка може зруйнувати систему бактерійних ферментів, необхідних для вироблення сира з насиченим ароматом.

Вітаміни молока

Крім своєї живильної функції, кількість певних вітамінів може робити вплив на метаболічну активність мікроорганізмів в сирі.

Вітамін А — жиророзчинний вітамін, і хоча велика його частина адсорбується жиром, деяка кількість залишається пов'язаною з глобулінами і іншими сироватковими білками; теплова обробка майже не викликає втрати цього вітаміну в молоці. Живильна цінність вітаміну А для організму пов'язана з присутністю не тільки самого вітаміну, але і його каротиноидних провітамінів (а-, (3- і у-каротина), кожен з яких перетвориться в організмі у вітамін А. Враховуючи цей зв'язок з каротиноїдами. можна бачити, що вміст вітаміну А в літньому молоці в 15 разів вище, ніж в зимовому. Ці каротиноїди мають темно-жовтий колір, і хоча не всі вони перетворяться у вітамін А, саме вони додають забарвлення молоку і сиру, яка особливо помітна в літній період.

Заквашувальні культури

Закваски в сироварінні - це спеціальні види бактерій або група видів одного і більш за пологи, які, розвиваючись в молоці і згустку, сприяють отриманню зрілого сиру. До 1880 р. більшість сироварів покладалися на природне сквашення молока для утворення кислоти, проте деякі виробники, наприклад, в Італії, використовували кислу сироватку. В даний час заквашувальні культури отримують з самих різних джерел. Іноді окремі їх види отримують з банків заквасок, що знаходяться у розпорядженні наукових установі і центральних молочних організацій, проте частіше за суміш видів і./или штамів поставляються на комерційній основі. Культури останнього типу розроблені для всіх основних видів сирів; завдяки перевіреній ефективності вони грають ключову роль у виробництві сира.

Бактеріальні закваски

Заквашувальні бактерії використовують перш за все для перетворення лактози в молочну кислоту, яка знижує рН системи і створює умови, необхідні для безлічі реакцій, що мають місце в сироварінні. По-друге, що не менш важливий, ферменти живих або загиблих заквашувальних бактерій руйнують деякі компоненти молока і виділяють попередників речовин, обумовлюючий смак і аромат продукту. Заквашувальні бактерії виконують три важливі функції:

—гліколіз — перетворення лактози в молочну кислоту; утворення кислоти виняткове хімічним шляхом (наприклад, через глюконо-6-лактон) в сучасних умовах не може належним чином замінити активність заквасок; виняток становлять м'які сири, такі як котедж.

—протеолиз — розщеплювання білкових ланцюгів на простіші речовини, такі як пептони, пептиди і амінокислоти.

—ліполіз — перетворення жирних кислот молочного жиру на кетокислоти. кетони і складні ефіри. деякі з яких обумовлюють смак і запах.

Мікроорганізми, використовувані для приготування заквасок, приведені в табл. 9.1. Лобапляємая в сирну ванну закваска може складатися з одного штаму визначеного пила бактерій, а може містити два. три і більш окремих видів, що відносяться до декількох штамів. Вибір культури залежить від виду майбутнього сира і в деякій мірі від місцевих традицій.


Laciococcus lactis subsp. lactis

Існує велика кількість штамів, проте слід уникати продуцентів низина

Lactococcus lactis tar. hollandicus

Використовується в сирах эдам. гауда

 Lactococcus lactis subsp. cremoris

Бере участь в утворенні смаку

Lactococcus lactis biovar. Diacetylactis

Бере участь в утворенні смаку

Streptococcus thermophilus

Витримує високі температури

Entrrococcus durans

Витримує високі температури

Etiterococcus faecalis

Іноді використовується для створення смаку і зростання при високих температурах

Leuconostoc mesenteroides subsp. cremoris

Бере участь в утворенні смаку

Leuconostoc mesenteroides subsp. dextranicum

Бере участь в утворенні смаку

Lactobacillus casei

Використовується в сирах з високою температурою другого нагрівання

Lactobacillus lactis

Використовується в сирах з високою температурою другого нагрівання

Lactobacillus delbrueckii subsp. bulgaricus

Використовується в сирах з високою температурою другого нагрівання

Lactobacillus heketicus

Використовується в сирах з високою температурою другого нагрівання

Propionibacterium freidenreichii subsp. shermami

Здібний до газоутворення і бере участь в утворенні смаку деяких сирів

Penicillium roque forti

Блакитна цвіль, використовується для внутрішнього зростання

Geotrichum candidum (P. candidum)

Біла цвіль, використовується для поверхневого зростання

Penicillium glaucum

Блакитна цвіль, використовується для внутрішнього зростання

Penicillium camemberti

Біла цвіль, використовується для поверхневого зростання

Як уже згадувалося, на вибір заквашувальної культури робить вплив географічне місцеположення, тому в північній Європі для вироблення сирів зазвичай використовують мезофільні бактерії, а термофільні культури найширше поширені в районах Середземномор'я. Проте це традиційне використання обумовлене також і сучасними науковими дослідженнями. Наприклад, мезофільні бактерії, такі як Lactococcus lactis, Leuconostoc mesenteroides subsp. cremoris, Lactococcus lactis subsp. lactis biovar часто включають до складу сирів, рецептура яких передбачає низьку температуру другого нагрівання (чеддер або чешир), проте при цьому слід брати до уваги відмінності між властивостями штамів. Наприклад, Lactococcus lactis швидко продукує молочну кислоту, скорочуючи час виробництва, проте деякі штами продукують бактериоцин низин, який може впливати на розвиток грампозитивних видів; інші штами сприяють розвитку в сирі гіркого смаку. З іншого боку, Lactococcus lactis, cremoris розвивається в молоці повільніше, але сприяє виробленню сира з добрим смаком. Тому багато заквасок складаються з комбінованих відповідним чином штамів Lactococcus lactis subsp. lactis і Lactococcus lactis subsp. cremoris. Важливо, щоб змішані мезофільні закваски продукувала більше кислоти в порівнянні із заквасками одного вигляду.

При виробленні м'яких різновидів сирів з певним смаком до складу заквашувальної мікрофлори включають Lactococcus lactis biovar. Diacetylactis . Lactococcus lactis, cremoris використовуючі солі лимонної кислоти для вироблення діацетилу (що має масляний смак), а також С02. Leuconostoc mesenteroides subsp. cremoris також продукують диацетил, але крім того виділяють значні кількості С02. Газоутворення проходить настільки інтенсивно, що гетероферментативні види іноді використовують для формування великої кількості дрібних очок в таких сирах, як аппенцеляер, в яких небажані великі очки, що утворюються видами Propionibacterium. Одночасне утворення С02 і діацетилу корисно також при виробленні сирів з більш незв'язним тестом, характерним для сирів, що дозрівають з цвіллю по всій масі. Проте серед виробників сирів, аналогічних сиру котедж, Leuconostoc навряд чи можуть набути широкого поширення, оскільки їх наявність може привести до утворення спучених спливаючих згустків, хоча навіть невелика кількість в заквасці Leuconostoc mesenteroides subsp. cremoris перетворить в етанол всю кількість ацетальдегіду, виробленого Laciococcus lactis subsp. lactis, попереджаючи вірогідність появи небажаного смаку.

Перевага молочнокислої культури, що інтенсивно росте, полягає в інгібіруванні більшої частини не заквашувальних бактерій (наприклад, колиформных бактерій), при цьому деякі культури лактобацил (Lactobacillus delbrueckii subsp. bulgaricus) акумулюють Н202. задерживаюшиий зростання псевдомонас, а також Proteus. Дані корисні реакції в деяких випадках можна підсилити за допомогою синергізму між компонентами закваски. Один з найвідоміших прикладів — взаємодія між Lactobacillus delbrueckii subsp. Bulgaricus (що проявляє помітну протеиназную активність) і Streptococcus thermophilus (що має тільки дипептидазную активність), яке викликає значне зростання продукування кислоти за рахунок їх комбінованої дії. Термофільні закваски, використовувані для вироблення сирів з високою температурою другого нагрівання, також виділяють метаболиты, стимулюючі зростання пропіоновокислих бактерій, які сприяють утворенню характерних очок в сирах, аналогічних очкам сира эмменталь. Внаслідок того, що Propionibacterium freidenreichii subsp. shermami розвивається в молоці дуже поволі, при використанні цієї культури як заквашувальна для сирів эмменталь і грюйер дані бактерії слід вирощувати окремо від лактобацил.

Форми культур, які можна отримати з комерційних молочних лабораторій, приведені в табл.; домінуючими на ринку є типи 6, 7 і 8. Докладні інструкції по використанню і ротації культур для боротьби з бактеріофагом, а також пояснення до особливих середовищ для приготування виробничих заквасок надають замовники.

 

Типи заквашувальних культур

Тип Форма
1  Рідкі культури, що культивуються в знежиреному або цілісному молоці, лакмусовому молоці або молоці з крейдою (молоко не повинне містити антибіотики)
2  Сухі (ліофілізовані) культури - зазвичай рідкі, висушені під вакуумом до змісту 5% вологи
3  Заморожена рідка культура
4  Культури, висушені методом розпилювання

5  Культури, заморожені в спеціальному робочому середовищі при -40 оС

6  Концентровані культури, заморожені в герметичних контейнерах при -196 оС

7  Концентровані змішані культури, висушені сушкою сублімації

8  Одноштаммовиє культури, висушені сушкою сублімації у фольговій упаковці, містять 5 х 1011 КОЄ/Г у відомих одиницях активності. Одна одиниця активностизакваски відповідає продукуванню 150 мілімолей молочної кислоти вобезжиренном молоці при 30 оС за 4 ч.

Типи 1,2 і 3 використовують для приготування проміжної закваски, типи 2.4, 5, би і 7 — для приготування виробничої закваски, типи 4, 5, 6, 7 і 8 — для безпосереднього внесення до сироварної ванни.

Аналіз існуючих технологій виробництва СК

Загальна технологія виробництва всіх сирів

Основні технологічні операції в сироварінні

Виробництво харчових продуктів в кожній країні здійснюють відповідно до стандартизованих письмових інструкцій, програм або методик. У сироварінні термін «рецептура» охоплює всі аспекти виготовлення певного вигляду сира, особливо при дрібномасштабному виробництві.

В рамках рецептур для різних видів сирів використовуються певні операції, аналогічні для будь-якого вигляду сира: коагуляція молока, розрізання згустка (постановка сирного зерна), друге нагрівання сирного зерна, обробка сирної маси для формування структури, посолка і пресування сира. Дані операції .уместно розглянути докладніше перед описом рецептур конкретних сирів.

Нормалізація молока для сироваріння

Регулювання складу молока вже достатньо давно здійснюють шляхом додавання в нього знежиреного молока або видалення частини сливок. Необхідність нормалізації молока хтя виробництва сиру обумовлена поряд причин:

1.  Для компенсації сезонних коливань складу сирого молока в цілях отримання сировини постійного складу.

2.  По економічних причинах, оскільки на ринку присутні сири з різним змістом жиру: жирні, напівжирні і 25%-ной жирності: зазвичай ці стандарти використовують Х1я деяких напівтвердих і м'яких сирів (аналогічних камамберу).

3.  Для задоволення попиту, що росте, на сири з низьким і зниженим змістом жиру необхідно було розробити методи стандартизації і удосконалити техніку сироваріння для виробництва такого сиру.

При використанні концентрованого ультрафільтрацією (УФ) знежиреного молока, яке зазвичай змішують із сливками, що гомогенізують, за для отримання потрібного співвідношення білка і жиру (наприклад, для сиру сен-полен) Поданим, приведеним в роботі, при отриманні напівтвердого сиру з низьким змістом жиру, виготовленого з УФ-концентрованого обезжиренного молока (загальний зміст сухої речовини якого рівний 35,9%) і сливок жирністю 80%, загальний зміст сухої речовини може досягати 41,3%. 5. У разі використання рекомбінованого молока або при недостатньому надходженні молока. Іноді замість сливок використовують зневоднений молочний жир, як, наприклад, при виробництві сира Непе. В ході ряду досліджень стандартизації складу сира чеддер встановлено, що для даного вигляду сира ідеальним є співвідношення в нормалізованому молоці казеїну і жиру, рівне 0,70:1. Оскільки зміст загального білка легше піддається визначенню (раніше — шляхом скріплення фарбників, в даний час — з використанням інфрачервоних аналізаторів), можна вважати задовільним відношення змісту загального білка до жиру, рівне 0.9:1. оскільки воно наближене до потрібного співвідношення казеїну і жиру. Використання інфрачервоних аналізаторів (ГПК) дозволяє безпосередньо контролювати вміст в молоці казеїну. Слід зазначити, що за нормалізацією молока, призначеного для виробництва сира, повинна слідувати теплова обробка, навіть якщо нормалізація проводилася шляхом додавання пастеризованого знежиреного молока або сливок.

Гомогенізація молока

Молоко, що гомогенізує, має неміцні агрегати білкових міцел, які важко вбудовуються в структуру сирного згустку, сприяючи утриманню згустком надмірної вологи, тому молоко для виробництва сиру зазвичай не гомогенізують. Проте молоко, що трохи гомогенізує, УФ-КОНЦЕНТРНРОВАНЕ утворює згустки, які краще утримують жир і вологу, сприяючи виходу більшого об'єму готового сиру. При виробництві сира чеддер з суміші молока, в якому гомогенізують тільки сливки, утворюються м'які, однорідні і еластичні згустки .

Згідно даним, приведеним в роботі. блакитний сир 45-60-добової витримки, вироблений методом ММУ з пастеризованого концентрованого молока, що гомогенізує, відрізнявся високими органолептичними показниками (див. розділ 10.3 про гомогенізацію молока для блакитного сиру).

У роботі указується, що об'єм сира, отримуваного з молока, що гомогенізує, вище при тиску гомогенізації, рівному 20 Мпа, чим при 10 Мпа.

Якщо не використовується спеціальний асептичний апарат, після гомогенізації молока для виробництва сиру слід проводити пастеризацію для зниження забруднень після її здійснення.

Теплова обробка молока

Теплова обробка молока для виробництва сиру направлена на стандартизацію його біологічної якості шляхом знищення небажаних бактерій і інактивація деяких ферментів. В процесі теплової обробки гине також більшість важливих для виробництва сиру бактерій (наприклад, молочнокислі бактерії) і руйнуються деякі нативні ферменти молока (наприклад, ліпази).

Температура і тривалість теплової обробки молока вибираються залежно від бажаного результату. Наприклад, обробка при нижчих температурах 65°Сможе инактивировать бактерії групи кишкових паличок, не роблячи впливу на ліпази, проте така обробка не ефективна відносно вегетативних кліток патогенних мікроорганізмів. Мінімальна термічна обробка, необхідна для загибелі хвороботворних мікроорганізмів в молоці для виробництва сира, повинна проводитися при 71,7°С протягом 15хв. з або за умов, близьких до даним.

Багато процесів виробництва сиру в значній мірі залежать від ступеня теплової дії. З підвищенням температури теплової обробки зростає денатурація р-лактоглобуліна; денатурований р-лактоглобулін утворюватиме комплекси з к-казеїном, інгібируючи коагуляцію і синерезис згустка. Це може негативно відбитися на якості згустку, особливо при виробленні твердих сирів, таких як чеддер. На практиці повинна проводитися пастеризація молока протягом 15хв. з при температурі нижче 75°Спереважно при 72-73 °С або аналогічна.

На жаль, при тепловій обробці гинуть деякі групи бактерій нормальної мікрофлори молока, які виробляють систему ферментів, сприяючих появі смаку і запаху сира, не вироблюваних звичайними заквасками. Деякі заквашувальні культури (Laciococcus lactis subsp. lactis) забезпечують утворення смакових речовин, зокрема діацетилу. В даний час розробляються виробничі культури, які відповідають за синтез додаткових смакових компонентів.

Внесення закваски

Після теплової обробки молоко зазвичай охолоджують приблизно до температури 30°С (точна температура залежить від рецептури сира). Температура важлива для зростання інокулированих заквасочних бактерій і подальшого процесу коагуляції, здійснюваної при використанні молокозвертуючих ферментів.

Виробничу закваску додають згідно рецептурі в кількості 0,05-4% або навіть 5%. Кількість використовуваної закваски часто залежить від її активності і вибору виробника. Вона повинна забезпечувати повільне зростання бактерій в молоці для утворення молочної кислоти, необхідної для здійснення наступної стадії. Подібне «дозрівання» молока під впливом закваски може тривати досить довго (до 2 ч), тоді як інокуляція великих кількостей закваски (2-4%) скорочує тривалість дозрівання до 5-20 мин.

Під час періоду дозрівання може спостерігатися зростання не тільки заквашувальних бактерій, але і інших мікроорганізмів. Таким чином, при нижчому рівні кислотності існує вірогідність розмноження бактерій групи кишкових паличок, не дивлячись на те що їх зростання вдається контролювати за рахунок швидкого утворення молочної кислоти. В цьому випадку рецептуру коректують, виходячи з наявного досвіду виробництва.

Види заквашувальних бактерій залежать від рецептури (наприклад, швидкі (активні) або повільні продуценти кислоти). Активність заквашувальних бактерії окремо і в сукупності впливає на швидкість утворення кислоти в молоці, а потім — в згустку. Внесення зайвої кількості закваски в цілях освіти кислоти, необхідної для роботи сичуга, може сприяти виробленню дуже великої кількості кислоти згодом. Швидкість вироблення кислоти деякими заквашувальними культурами низька на початку процесу, але поступово зростає.

Закваски прямого внесення реалізують в замороженому вигляді або після сушки сублімації (ліофілізовані). Норми додавання таких заквасок в молоко нижчі, ніж виробничих заквасок, і зазвичай складають 0,01-0,02%. Як правило, дані закваски мають тривалішу лагфазу в порівнянні з виробничими заквасками, що слід враховувати, підвищуючи температуру дозрівання і коагуляції з 29-31°С і злегка збільшуючи тривалість дозрівання.

Спочатку утворення кислоти може бути декілька сповільненим, але щонайменше зіставним з активністю виробничих заквасок на пізніх стадіях виробництва сира. При роботі з незнайомими культурами виробникові слід спиратися на вже наявний досвід.

Деякі сировари в цілях економії часу додають закваски у ванну під час заповнення її молоком. З іншого боку, при цьому можна втратити багато часу, якщо дуже низька температура молока, що поступає, уповільнюватиме розвиток виробничих заквасок.

Гранульовані закваски не виділяють в молоко бактерії, а їх гранули часто отвердівають при другому нагріванні і залишаються в сирі у вигляді білих вкраплень. Для повного розчинення гранульованих заквасок звичайна достатньо процедури їх закачування у ванну або молоко через систему трубопроводів.

На крупних виробництвах для попереднього дозрівання закваски инокулюють у ванну або танк, проте в дрібних молочних господарствах використовуються відкриті прямокутні ванни, і закваски вносять до ванни з молоком безпосередньо перед додаванням сычуга. При такому підході можливе отримання неоднорідного коагулята, окремі ділянки якого при розрізанні виявляються гранульованими і дуже щільними, інші — м'якими. Не дивлячись на те що згодом сирне зерно піддається вимішуванню в процесі другого нагрівання, в деякій частині згустку кислота утворюється дуже швидко, без «дозрівання». В результаті виходить частково крошлива, кисла на смак сирна маса, знебарвлена або з плямами. Після підфарбовування забарвлення такого сиру може виявитися блідим або нерівномірним, а при дозріванні в нім можуть утворюватися мокрі ділянки з сироваткою, що сочилася (так звані «сироваткові гнізда»).

Фарбники і інші добавки

Перед дозріванням або коли температура молока досягає рівня, необхідного для сичужного згортання (29-30°С). у нього додають (відповідно до рецептури) фарбники та інші деякі хімічні препарати (нітрат натрію або хлорид кальцію). Перед додаванням у ванну фарбники слід розбавляти, крім того, вони повинні рівномірно розподілитися по всій масі молока. Хімічні препарати вносять в розчиненому вигляді в кількості, вказаній в рецептурі.

Внесення сычуга

Процедура тестування молока на здібність до сычужному згортання значно відрізняється у різних виробників. В більшості випадків в рецептурі вказаний рівень кислотності або рН, при якому додають сичужний фермент, оскільки від цього залежить тип згустку і швидкість утворення коагулята. Використовуючи молоко постійного відомого складу і певний набір культур прямого внесення, можна точно визначити момент його готовності до згортання.

Для розрахунку необхідної кількості ферменту багато сироварів використовують тестовий кухоль Маршалла1. Кухоль є судиною ємністю 500 мл з точно виміряним отвором в підставі. Стінки кухля прямі, білі, мають шкалу з п'ятьма діленнями. Кухоль заповнюють молоком з ванни (зберігаючи його температуру) і додають в нього 1 мл ферменту. Молоко витікає з отвору в підставі, поки не згорнеться. Рівень коагуляту відповідно до ділень на стінках указує згортаючу здатність молока. По діленнях, нанесених на стінки чашки, визначається придатність молока для згортання (наприклад, ділення Х° 3). Даний метод слід застосовувати тільки досвідченим виробникам.

При іншому підході в судину, заповнену 112 мл молока з ванни, додають 3.5 мл ферменту. На поверхню молока поміщають плаваючу соломинку або шматочок деревного вугілля, а потім обертальними рухами проводять перемішування. Час з моменту додавання ферменту до закінчення обертання вимірюють в секундах. Нормальною вважається коагуляція протягом 22 з при рівні кислотності 0.21%. Молоко, яке згущується довше, ніж за 22с. не рекомендується для сычужного згортання. Цей метод також слід застосовувати досвідченим сироварам.

Вибір типу молокозгортаючого ферменту кожен виробник здійснює самостійно. Деякі чинники, які слід враховувати при прин`яти рішення, описані в розділі 11. Кількість ферменту і температура, при якій здійснюється сычужное згортання, залежать від рецептури конкретного сиру, типу ферменту і складу молока.

Коагуляція

Коагуляція (згортання) молока проходить в дві стадії. На першій стадії, яка практично не залежить від температури, відбувається розрив поліпептидного ланцюга к-казеїну між 105 і 106 амінокислотними залишками (фенилаланином і метионином). Це розщеплювання приводить до утворення пара к-казеїну і макропептиду, який дифундуватиме з міцел і згодом буде втрачений з сироваткою. Росщеплення може відбуватися при низьких температурах < 10°С, хоча на практиці ця температура зазвичай вище. Деякі методи вироблення згустку припускають використання низьких температур: наприклад, метод , при якому здійснюють сичужне згортання охолодженого концентрованого молока, а потім додають теплу воду, сприяючу коагуляції. Друга стадія (стадія коагуляції) більше залежить від температури і відбувається тільки при нагріванні у присутності вільних іонів кальцію.

Як наголошувалося вище, к-казеїн надає захисну (що стабілізує) дію на казеїнові міцели. Коли близько 90% к-казеїна перетворюється на пара к-казеїн ця дія припиняється, і за наявності достатньої кількості іонів кальцію і достатньої високої температури > 20°Спараказеїнові міцели агрегують з утворенням коагулята, що включає решту молочних компонентів. Якщо коагуляція відбувається не повністю, освічений згусток не досягне достатньої щільності, відповідній рецептурі сира: при цьому частина інших компонентів молока (наприклад, жир. сироваткові білки, продукти розпаду білка) буде втрачена з сироваткою.

Нижче перераховані чинники, що впливають на щільність згустку і повноту коагуляції Щільність згустку зростає, якщо кількість сичуга, що вноситься, збільшується з 0,006 до 0,03%, але не підвищується при подальшому його збільшенні.

1.  Щільність згустку збільшується з підвищенням температури до 40°С, потім зменшується, а також температуру, що рекомендується для різних рецептур сира. Так, згусток, утворений при 40°С. має резинисту структуру і погано розрізає після тривалого зберігання.

2.  Низька щільність згустку і тривала коагуляція характерні для молока, яке перед сичужним згортанням зберігалося в охолодженому вигляді. Щільність згустку можна підвищити шляхом додавання хлориду кальцію до максимального рівня (0.07%).

3.  На щільність згустку може впливати відношення змісту жиру до білка. Молоко з високим вмістом жиру сприяє утворенню м'якого згустку.

4.  Знижений рівень рН (тобто висока кислотність) сприяє підвищенню щільності згустку аж до рН 5,8: при подальшому підвищенні рН щільність починає знижуватися. У традиційному сироварінні молоко зазвичай коагулюють при рН в інтервалі 6.5-6.35; у разі використання культур прямого внесення допустимі вищі значення.

5.  На повноту згортання впливає ступінь покриття к-казеїну денатурованими білками або вільними жирними кислотами, що відщеплюються при протеолізі і ліполізі.

6.  Протеоліз або взаємодія з амінокислотами на якій-небудь стороні пептидного зв'язку к-казеїну може привести до його неповного розщеплювання і утворення м'якого згустку.

7.  На щільність згустку робить вплив кількість присутніх в нім сироваткових білків.

8.  Щільність згустку залежить також від розбавлення молока водою.

10. Деякі молокозвертаючі ферменти свідомо утворюють м'якші. Дані чинники іноді указують в рецептурах певних видів сирів, проте дуже часто виробники перевіряють їх на власному досвіді, без якого неможлива правильна інтерпретація рецептур.

Розчин згортаючого ферменту готують, розбавляючи його чистою водою в співвідношенні 1:10; перед внесенням до ванни підготовленого розчину молоко ретельно перемішують. Для забезпечення необхідного ефекту після додавання ферменту зазвичай досить перемішати молоко близько 5 хв. Недостатнє перемішування (а також неповне розчинення ферменту) і, як наслідок,, неповна коагуляція сприяють спливанню жиру на поверхню молока. В результаті розрізання згустку збільшується втрата жиру, який піднімається на поверхню сироватки. Дуже енергійне або дуже тривале перемішування молока (надмірне перемішування) приводить до руйнування згустку, що утворюється; такі згустки швидко віддають сироватку, не скріпляються і втрачають в сироватці жир. Вібрація від роботи важкого устаткування може пошкодити коагулят і викликати його порушення.

Для визначення точки згортання необхідно крапнути одну дві краплі молока в чисту воду; якщо згусток «свернулся», послідує повільне осідання з'єднань, що згорнулися, і гранул у воді.

Під час другої стадії коагуляції важливо, щоб молоко залишалося нерухомим. На даній стадії параказеинові міцели коагулювали або зчіплюються, і при порушенні зв'язків більше не з'єднуються.

Щільність згустку визначається рецептурою і залежить від вигляду сира. На даній лінії коагуляції утворюється молочна кислота, внаслідок чого підвищується міцність згустку, і, крім того, відбувається ферментний розпад деяких компонентів, сприяючих його «дозріванню».

У сирний згусток переходить близько 6% хімозину, спочатку доданого в молоко. Під час другої стадії молокозгортаючій активності відбувається неспецифічний протеоліз а- і р-казеїнів, що бере участь в дозріванні сира.

Розрізання згустка (постановка зерна)

Коагулят готовий до розрізання після періоду від 25 хв. до 2 ч відповідно до рецептури. Проте деякі сировари обчислюють момент розрізання, умножаючи період згортання на 3. Наприклад, якщо період з додавання сычуга до початку згортання згустку складає 12 хв., то встановлений момент розрізання рівний 36 мін після додавання ферменту.

Єдиної думки щодо визначення моменту почала розрізання згустку, а отже, отримання потрібних параметрів, не існує .

Робилася безліч спроб визначення цієї крапки. Один з приладів дозволяє зміряти тиск або щільність, яких повинен досягти коагулят перед розрізанням, шляхом занурення в згусток пластини з електродами; інший визначаєступінь загасання коливань в коагуляті. Оскільки ці прилади визначають різні параметри, дані зіставити досить складно. Одна з проблем полягає в тому що деякі прилади можуть проводити вимірювання в молоці тільки поза сирною ванною. Таким чином, точка розрізання, яка виходить з отриманого при вимірюваннях графіка або діаграми, не обов'язково точно відображає полягання молока у ванні .

Деякі пристрої здатні, окрім вимірювання опірності розрізанню, визначати інші структурно-механические параметри, але вони не відображають якість згустку. Неруйнуючі тести, наприклад, з використанням в’язкоэластичної реометрії (реології), не підходять для устаткування молочних заводів. Вимірювальні методи для процесу формування згустку описані в роботі.

Труднощі у визначенні точки розрізання пов'язані також з тим, що поверхневий шар коагуляту, особливо у відкритих ваннах, зазвичай холодніше за нижні шари на декілька градусів, і, отже, м'якше. Таким чином, судити про щільність згустку по властивостях його поверхні недоцільно.

Традиційний метод, використовуваний сироварами, полягає в зануренні руки, щупа (шпателя) або стовпчика термометра у верхній шар згустку і підведенні його, внаслідок чого згусток розпадається, утворюючи лінію зламу. Чистий розлом з краями, що не розпливаються, і зеленою сироваткою у його підстави указує на те, що згусток готовий до розрізання. М'яка нерівномірна лінія зламу з білою сироваткою свідчить про слабку міцність згустку. По сторонах зламу можна судити про якість згустку: гранульована структура указує на те, що згусток дуже щільний. Згідно одному з правил сироваріння, згусток краще розрізати раніше, після чого сирне зерно дозріватиме в теплій сироватці, що покриває його поверхню. Коли згусток досягає достатньої щільності, його розрізають сирними ножами або іншими інструментами. Після розрізання сирне зерно «затягуватиметься» (зрощувати волокнину знов освічених поверхонь сирного зерна), утворюючи оболонку (шкірку), що перешкоджає втраті жиру і інших молочних компонентів.

Розмір сирного зерна після закінчення розрізання визначають відповідно до рецептури. Згустки, які підлягають другому нагріванню при високій температурі, нарізують на дрібні частини (ставлять дрібне зерно) для полегшення теплопередачі і видалення вологи, тоді як згустки, що підлягають другому нагріванню при нижчій температурі, можна нарізувати на відносно крупні шматки (поставити крупне зерно), якщо тільки вони не дуже кислі.

Під час розрізання згустку (постановки зерна), а також в процесі подальшого другого нагрівання (теплової обробки) поверхневий шар сирного зерна зберігає властивості мембрани, що має деяке значення в період дозрівання сира.

Жирові глобули містяться в матриці просторової казеїнової сітки частково за рахунок фізичного включення, частково за рахунок вільного зв'язку оболонки жирової кульки і білка. Жирові глобули, що знаходяться на поверхні зрізу, витікають (просочуються). Не дивлячись на те що частка такого жиру в сироватці складає всього 0,2-0,3%, це значення перевищує 5% загального жиру молока і призводить до зниження виходу сира. Чим дрібніше зерно, тим більше загальна площа поверхні зрізів і вище вірогідність втрат жиру, тому згусток рідко розрізають на кубики розміром менше 6 мм. Сироватка після постановки зерна містить розчинні у воді компоненти, зокрема лактозу, сироваткові білки, мінеральні речовини, пептиди і інші азотисті небілкові речовини.

Для розрізання згустків в невеликих відкритих ваннах можуть використовуватися ручні сталеві сирні ножі, відстань між лезами яких може складати 6-18 мм, ширина установки — 150-200мм, а довжина — 700-800мм. Леза розташовуються таким чином, що проводять вертикальний і горизонтальний розрізи. Іноді пристосування для подрібнення виготовляються з дроту, натягнутого на сталеві рами (так звані ліри або арфи), причому в основному використовується неіржавіюча сталь, що практично повністю замінила білу жерсть.

Механічні ножі для розрізання згустку більше за ножі для ручного використання і складаються з лез, а іноді з дроту. Важливо, щоб краї лез були достатньо гострими для рівного розрізання згустку. Крупні дротяні ножі краще розділяють згусток в порівнянні із сталевими ножами, і деякі сировари використовують попереднє розрізання дротяними ножами. Дротяні ножі можуть застосовуватися для розрізання м'яких згустків, наприклад, коагулятів сира котедж. Дрібні виробники віддають перевагу подовжній нарізці уручну в довгих прямокутних ваннах, що дозволяє запобігти дробленню м'яких згустків при первинному механічному розрізанні.

У разі використання сучасних закритих ванн згусток слід розрізати механічно. При цьому конструкція ножів не дозволяє витягувати їх з ванн, виконуючи подвійну функцію: кут нахилу леза по відношенню до згустку такий, що якщо міняється напрям обертання ножа, відбувається швидше перемішування згустку, чим його розрізання. Ножі, що обертаються, в круглих або овальних ваннах як правило не розбивають згусток об стінки ванни. Проте навіть в цьому випадку в деяких установках слід контролювати швидкість обертання в цілях мінімізації пошкоджень.

При виробництві м'яких сирів, таких як бри, куркульня або ка.ма.ибер, процедура розрізання і постановки зерна (іноді розливання) супроводжується формуванням в обручах або формах в цілях відділення сироватки без перемішування на відміну від процесу вироблення напівтвердих або твердих сирів. У міру стікання сироватки і усихання сирної маси сир зберігає форму.

При виготовленні, наприклад, кисломолочного сиру, коли згусток перетворюють на пастоподібну масу, коагулят вичерпують або виливають на тканину, підвішену на крюках або стовпах для полегшення виділення сироватки із згустка. Наприклад, в процесі Віщого використовують вібрацію тканини, забезпечуючи краще видалення сироватки. Залежно від передбачуваної консистенції можливе пресування згустку для видалення залишкової сироватки і отримання твердої маси, яка підлягає формуванню і упаковці. З іншого боку, сироватка може бути відокремлена від сирних згустків за допомогою спеціальних сепараторів, що обертаються, при цьому консистенцію маси визначають розмір сопла і продуктивність механізму. Оскільки ферментированный продукт сепарують теплим, необхідне застосування охолоджувача. При виробленні таких продуктів, особливо Ргота&Ргага (м'якого сиру типу сиру), можна також здійснити концентрацію за допомогою ультрафільтрації.

Вимішування, друге нагрівання і формування сирної маси

Після первинного розрізання сирна маса залишається м'якою, а що покриває сирне зерно оболонка знаходиться в незв'язному стані. Перед стіканням сироватки для запобігання зайвому кришінню, втрат жиру і сирного пилу необхідне повільне вимішування зерна. Коли оболонка зерна почне набувати більш виражених властивостей мембрани, швидкість перемішування можна збільшити.

Процес другого нагрівання сприяє обезводненню білкової матриці, внаслідок чого сирне зерно стає щільнішим, пружним, круглим і виділяє більше сироватки. Підвищення температури прискорює метаболізм бактерій, що знаходяться усередині зерна. Кількість молочної кислоти зростає, рН знижується, що сприяє стисненню частинок і виділенню сироватки.

Оскільки сироватка містить в розчиненому вигляді лактозу і мінеральні речовини, їх кількість, перехідну в сир. пропорційно кількості вологи в згустку. Фосфат кальцію пов'язаний з казеїном і такий, що знаходиться у вигляді колоїдного розчину, у міру зниження рН переходить в розчинний стан. Таким чином, сирна маса з підвищеною кислотністю (наприклад, маса блакитного сиру) втрачає більше кальцію (92%) в порівнянні з сирною масою з меншою кислотністю (наприклад, сира эдам). що втрачає тільки 35% кальція.

Основним субстратом для розвитку молочнокислих бактерій в згустку є лактоза, присутність якої забезпечує утворення молочної кислоти. Концентрація лактози в сирній масі є визначальним чинником метаболізму бактерій, отже, зменшення концентрації лактози нижче за деяку критичну крапку позначиться на зростанні бактерій і продукуванні молочної кислоти. Слід контролювати рівень лактози в сирній масі, і. відповідно, кількість молочної кислоти, що утворилася, враховуючи розмір сирного зерна, температуру другого нагрівання і швидкість підвищення температури.

Частинку згустку можна розглядати як иммобилизованный бактерійний фермент, обмежений проникною оболонкою. Усередині частинки заквашувальні бактерії перетворять лактозу в молочну кислоту, яка переходить в сироватку під дією градієнта потенціалу (за рахунок ущільнення згустку), внаслідок чого остання стає все більш кислою. Даний процес скорочує кількість лактози в частинці згустку, пов'язане із зміною проникності (структури) згустку, забезпечуючи метаболізм мікроорганізмів. Дифузія лактози в згустку може також відбуватися при виділенні сироватки з частинки згустку унаслідок стиснення казеїнової матриці .

Існує два способи зниження кількості лактози в сирній масі:

-  стиснення згустків за допомогою теплової дії і зниження рівня рН (шляхом накопичення молочної кислоти в згустку);

додавання води після видалення частини сироватки; в результаті знижується вміст лактози в розбавленій (що розкислює) сироватці, а також в сирному зерні. Додавання гарячої води в суміш сироватки і сирного зерна може бути також використане як метод другого нагрівання сирної маси при виготовленні сира з «промивкою» сирного зерна.

Метою другого нагрівання є скорочення згустку для виділення вологи і зміцнення згустку, а також щоб сталі можливі процеси формування, пресування і посола. Саме даний етап покладений в основу розділення сирів на чотири групи (виключаючи м'які сири, деякі з яких піддають другому нагріванню):

1)  сирі з чедеризацією сирної маси, такі як чеддер, чешир;

2)  сири витягнутого згустку або сири типу <паста филатаь-

3)  сирі без чедеризації сирної маси, такі як эдам і гауда, а також види, які знаходять текстуру згодом (тильзит(ер), эммеиталь і т. д.);

4)  блакитний сир.

Інтенсивність (температура) другого нагрівання, від якої залежить кількість освіченої кислоти, вибирається сироваром на підставі власного досвіду виготовлення сира.

На мал. 7.2 показаний вплив другого нагрівання різної інтенсивності на процес виготовлення трьох видів сирів.

Висока інтенсивність другого нагрівання приводить до ущільнення оболонок сирного зерна і формування непроникних мембран, що перешкоджають виділенню вологи з внутрішніх шарів зерна, що приводить до отримання сира з високим вмістом влаги1. Отриманий сир часто виявляється кислим, твердим, з грубою консистенцією, крошливим, що сухим, таким, що має сторонні (неспецифічні) присмаки, які з'являються в результаті утримання сироватки.

Для сирної маси, в якій бактерії поволі виробляють молочну кислоту, необхідна низька температура другого нагрівання. З іншого боку, скорочення згустку може відбуватися за рахунок самого кислотостворення без використання другого нагрівання. Максимальна температура другого нагрівання визначається рецептурою, проте слід враховувати, що при дуже високій температурі другого нагрівання (вище 40°С) інгібіруватиме зростання звичайних молочнокислих бактерій закваски або навіть приводити до їх загибелі. При використанні термостійких (термофільних) заквашувальних бактерій (наприклад, Lactococcus lactis biovar. Diacetylactis зазвичай потрібна температура вище звичайною.

Виробник також вирішує, коли закінчувати перемішування змішай сироватки і сирної маси; даний чинник часто не відбитий в рецептурі. Припинення перемішування називають «точкою осідання», коли сирне зерно опускається (осідає) на дно ванни.

Сирну масу, що швидко підкисляється, зазвичай швидко перемішують аж до видалення сироватки. При повільному формуванні згустків перемішування припиняють зовсім, і згусток осідає; іноді в цілях запобігання надмірному злипанню і грудкує сирного зерна його перемішують з перервами. Ефект осідання сприяє зменшенню втрат молочної кислоти сирної маси в сироватку, при цьому рН сирного зерна знижується швидше, і воно готове для проведення наступної стадії виробничого процесу.

Результати тесту рівня кислотності на даному етапі потребують пояснення, оскільки кислотність сирної маси і сироватки відрізняються. Зазвичай кислотність сирного зерна вище унаслідок вмісту в нім більшої кількості бактерії. але іноді спостерігається зворотна ситуація: сирна маса, кислотність, що поволі підвищує, виявляється менш кислою, чим сироватка.

Оскільки сироватка надає на сирну масу захисну дію, сприяє підтримці температури і містить речовини, необхідні для метаболізму мікроорганізмів. Дуже важливо правильно визначити момент, коли слід видаляти сироватку. Готове до формування зерно повинне мати оптимальний зміст вологи і клейкість.

Сирну масу, яка не піддається чедеризації (эдам, гауда, эмменталь), на цій стадії витягують з сироватки і поміщають в перфоровані форми . Чеддерізуємую сирну масу (наприклад, сирів чеддер або чешир) залишають у ванні або переміщають для подальшої обробки на дренажний стіл І видаляють сироватку. При використанні обох методів в рецептурі дану стадію позначають як «формування сирної маси» і «відбір (видалення) сироватки».

Швидкість утворення кислоти в одиницю часу багато в чому визначає кислотність сирної маси. Як правило, запас лактози вичерпується незабаром після пресування, і в даний період кислотність сирної маси досягає найбільшого значення (тобто найменший рН).

Для багатьох твердих сирів рН. рівний 5.0. вважається дуже низьким. Для сиру чеддер оптимальними є значення рН 5.2-5.25. Тверді сири, рН яких складає 4,9-5,0, зазвичай кислі, мають рихлу крошливу структуру, грубе тісто. Проте в певних сирах рН на даній стадії може бути низьким - 4,2-4.8 (наприклад, в сирах, аналогічних сиру фета, або близькосхідному білому сирі розсолу).

Сирий з промивкою сирного зерна

Додавання води в суміш сирного зерна і сироватки приводить до видалення з сирної маси лактози і інших розчинних компонентів, а також до повторного вбирання вологи. Гаряча вода плавить сирне зерно і витісняє з нього вологу. Така дія направлена на підтримку високого рН, оскільки активність молочнокислих бактерій знижується унаслідок скорочення кількості лактози. Нижче наводяться декілька прикладів використання води для промивки зерна.

1.  При виробництві сира эдам видаляють третину сироватки, потім проводять теплову обробку шляхом додавання гарячої води (50-60 °С). Температура сирної маси підвищується до 36-37°С, унаслідок чого рН пресованого сиру повинен складати 5.2-5.4. хоча може досягати і 4.6-4.8.


Информация о работе «Характеристика технології виробництва сиру кисломолочного»
Раздел: Промышленность, производство
Количество знаков с пробелами: 146670
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
63750
9
0

... доброякісному продукту. Консистенція продуктів повинна мати однорідний колір, з порушеним згустком при резервуарному й непорушеним при термостатному спокої виробництва. Асортимент продукції, що виробляється Сумським молочним заводом в2007 р., вказаний в таблиці 4.1. Таблиця 4. 1. Асортимент продукції № Найменування продукції ГОСТ, ТУ, ОСТУ 1. Масло коров’яче: сладкосливочное ...

Скачать
103775
17
3

... 611 0,4 8,1 2,43 Підсирні вершки 593 30 178 0,4 2,3 0,69 Сироватка знежирена 50380 0,05 25 0,4 201 0,10 Залишок 2.3 Визначення показників якості та умов зберігання За фізіко-хімічними показниками сир твердий «Углічеський» повинен відповідати вимогам, зазначеним в табл. 2.6. Таблиця 2.6 Фізико-хімічні показники сиру Найменування Масова ...

Скачать
157878
22
6

... оформлення – 5,05 грн. за 1 долар США, 6,874565 за 1 євро.  3.2 Порядок митного оформлення кисломолочного сиру   Порядок митного оформлення визначається розділом 3 Митного кодексу України. Усі товари та інші предмети, що переміщуються через митний кордон України підлягають обов'язковому митному. Метою здійснення митного оформлення є: -           забезпечення митного контролю, який здійснює ...

Скачать
55802
14
3

... на середовище Кеслера. Висіви витримують в термостаті при температурі 43°С протягом 24 годин. Результат повинен бути негативним. Висновки Виконавши даний курсовий проект на тему: «Проект цеху з виробництва кисломолочного сиру зернистого типу “Коттедж” потужністю 2 т за зміну» слід зробити висновки: 1. Кисломолочний сир являє собою традиційний білковий кисломолочний продукт, що володіє ...

0 комментариев


Наверх