= 2859 кВАр.
Расчетная полная мощность с учетом потерь в трансформаторах:
= 39688,36 кВА;
208,31 А. (21)
Согласно ПУЭ (стр.42, таблица 1.3.29) предварительно берём сечение 50 мм2. Согласно того же источника неизолированные провода нам необходимо проверить на корону. Из практики уже известно что минимальное сечение на
110 кВ проходящее по условию короны это 70 мм2. Согласно этому увеличиваем первоначальное значение до 70 мм2.
Тот же источник требует от нас проверки по экономической плотности тока. Экономически целесообразное сечение (S, мм2) определяется из соотношения (21) где номинальный ток (Iном, А) вычислен при условии что линия двухцепная, а также значение экономической плотности тока (Jэк, А/мм2) взято из ПУЭ (стр.50, таблица 1.3.36) и равно 1 А/мм2 при Tmax ³ 5000 часов.
104,2 А., 104 мм2. (22)
Согласно ПУЭ (пункт 1.3.27.) во избежание увеличения количества линий, сверх необходимого по условию надёжности, допускается двукратное превышение нормированных значений, приведённых в таблице.
Проверяем сечение провода по падению напряжения в конце линии:
R = r0×l = 0,42×50 = 21 Ом;
X = x0×l = 0,429×50 = 21,45 Ом;
0,98 % < 5 %
Таким образом провод АС-70/11 для ВЛЭП-110 сечением удовлетворяет условиям проверки.
5.3 Технико-экономический расчетЦелью ТЭРа является определение варианта с более выгодным напряжением. Определяются годовые затраты по каждому варианту:
З=к×Ен+И
где: к - капитальные затраты; Ен - нормативный коэффициент эффективности,
Ен=1/Тм,
где: Тм - нормативный срок службы, Тм = 8 лет, Ен = 0,125
И - издержки:
И = Иа + Иоб + Иэл,
где: Иа - амортизационные годовые отчисления,
Иа=к×Еа,
при: Еа = 0,028 для ЛЭП, Еа = 0,063 для П/СТ.
Иоб - издержки на обслуживание, текущий ремонт,
Иоб=к×Етр,
при: Етр = 0,004 для ЛЭП, Етр = 0,01 для П/СТ.
DИэл - стоимость потерь электроэнергии.
1 вариант.
Uпит = 35кВ, 2 трансформатора ТРДН-32000/35, 2х цепная линия, марка провода АС-185/24.
Стоимость КТП с трансформаторов 1576000 рублей.
Стоимость сооружения линии 151000 руб/км.
Общая стоимость линии 4530000 рублей.
Общие капитальные затраты 6257000 рублей.
Определим издержки на амортизацию:
Uал = 4530000·0,028 = 126840 руб/год;
Uап = 1576000·0,063 = 99268 руб/год.
Определим издержки на обслуживание и текущий ремонт:
Uтрл = 4530000·0,004 = 18120 руб/год;
Uтрп = 1576000·0,01 = 15760 руб/год.
Суммарные издержки на амортизацию и обслуживание 259988 рублей.
Определим стоимость потерь электроэнергии в ЛЭП:
Находим потери мощности:
кВт;
где Pр и Qр с учетом потерь в трансформаторах ППЭ.
Стоимость потерь в ЛЭП:
DUл = DPл·t·C = 24818,5·323·0,24·0,71 = 8553782,9 руб/год.
Определим стоимость потерь электроэнергии в трансформаторах:
Потери энергии в трансформаторах:
,
где: t - число часов в году;
t - время max потерь; n - число трансформаторов.
кВт,
руб/год.
Общая стоимость потерь электроэнергии:
DUэл = DUл + DUт = 8553782,9 + 552954,456 = 9106737,356 руб/год.
Годовые затраты по 1-му варианту:
З = 6106000·0,125 + 9366725,356 = 10129975,36 руб/год.
2-й вариант.
Uпит =110кВ,2 трансформатора ТРДН-32000/110,2х цепная линия, марка провода АС 70/11.
Стоимость КТП с трансформаторами 3024200 рублей.
Стоимость сооружения линии 160500 руб/км.
Общая стоимость линии 4815000 рублей.
Общие капитальные затраты 7999700 рублей.
Определим издержки на амортизацию:
Uал = 4815000·0,028=134820 руб/год.
Uап=3024200·0,063=190524,6 руб/год.
Определим издержки на обслуживание и текущий ремонт:
Uтрл=4815000·0,004=19260 руб/год.
Uтрп=3024200·0,01=30242 руб/год.
Суммарные издержки на амортизацию и обслуживание 374846,6 рублей.
Определим стоимость потерь электроэнергии в ЛЭП:
Находим потери мощности:
кВт;
где Pр и Qр с учетом потерь в трансформаторах ППЭ.
Стоимость потерь в ЛЭП:
DUл = DPл×t×C = 2767,42 323·0,24·0,71 = 2723787,37руб/год.
Определим стоимость потерь электроэнергии в трансформаторах:
Потери энергии в трансформаторах:
,
где: t - число часов в году;
t - время max потерь;
n - число трансформаторов.
кВт/ч,
DUт = DАт С = 800869,04 0,71 = 568617,023 руб/год.
Общая стоимость потерь электроэнергии:
DUэл = DUл + DUт = 2723787,37 + 568617,02 = 3292404,39 руб/год.
Годовые затраты по 2-му варианту:
З = 7839200·0,125 + 3667250,99 = 4647150,99 руб/год.
Составим таблицу 7 для сравнения вариантов.
таб.7
Uпит т, кВ | К, руб | И, руб/год | З, руб/год |
35 110 | 6106000 7839200 | 9366725,356 3667250,994 | 10129975,36 4647150,994 |
Из рассмотренных вариантов в качестве рационального напряжения питания принимаем к установке напряжение 110 кВ.
5.4 Выбор схемы питанияСхемы электрических соединений подстанций и распределительных устройств должны выбираться из общей схемы электроснабжения предприятия и удовлетворять следующим требованиям:
обеспечивать надежность электроснабжения потребителей;
учитывать перспективу развития;
допускать возможность поэтапного расширения;
учитывать широкое применение элементов автоматизации и требования противоаварийной автоматики;
обеспечивать возможность проведения ремонтных и эксплуатационных работ на отдельных элементах схемы без отключения соседних присоединений.
На всех ступенях системы электроснабжения следует широко применять простейшие схемы электрических соединений с минимальным количеством аппаратуры на стороне высшего напряжения, так называемые блочные схемы подстанции без сборных шин.
Для выбора устройства высшего напряжения (УВН) необходимо рассмотреть как минимум два типовых решения; для них провести технико-экономический расчет (ТЭР) и на основании этого расчета принять наиболее экономичный вариант.
Сравниваемые схемы представлены на рис.4.
Так как расстояние от подстанции энергосистемы до ППЕ l = 50км, то целесообразно выбрать схему с выключателем. В качестве второго варианта примем схему короткозамыкатель-отделитель.
При расчетах капиталовложения на трансформаторы, выключатели на отходящих линиях, секционные выключатели не учитываются, так как они будут совершенно одинаковы.
1. Вариант.
Схема выключатель-разъединитель.
1. Выключатель ВМТ-110Б-20/1000УХЛ1
к1 = 9000 руб.
2. Разъединитель РНДЗ.2-110/1000У1
к2 = 200 руб.
Капиталовложения: К1=к1+к2=9000+200=9200 руб.
Издержки: И1=Еа×К1=0,063×9200=579,6руб. /год.
|
Вариант 1 Вариант 2
2. Вариант.
Схема отделитель-короткозамыкатель.
1. Отделитель ОД-110Б/1000У1 к1=180 руб.
2. Короткозамыкатель КЗ-110УХЛ1 к2 = 200 руб.
3. Контрольный кабель АКВВБ 4х2,5
к’3=0,82 тыс. руб. /км;
к3 = 820×30 = 246 руб.
Капиталовложения:
К2=к1+к2+к3=180+200+24600=24980 руб.
Издержки: И2 = Еа×К2 = 0,063×24980 = 1573,74 руб. /год.
При рассмотрении вариантов электроснабжения необходимо произвести оценку надежности данных вариантов.
Оценка надежности производится на основании статистических данных о повреждаемости элементов электроснабжения, ожидаемого числа отключений для планового ремонта и времени, необходимого для восстановления после аварий и для проведения планового ремонта.
Оценку надежности проведем при последовательном включении элементов электроснабжения.
Оценка надежности производится на основании параметров, приведенных в таблице 8.
Таблица 8
Варианты | Наименования оборудования | w, 1/год | Тв×10,лет | Кп, о. е. |
1 | Выключатель | 0,06 | 2,3 | 6,3 |
Разъединитель | 0,008 | 1,7 | 1,1 | |
2 | Короткозамыкатель | 0,02 | 1,7 | 1,1 |
Отделитель | 0,03 | 1,7 | 1,1 | |
Контрольный кабель | 0,13 | 90,2 | 7,38 |
Параметр потока отказов одного присоединения:
1. Вариант.
= 0,06+0,008 = 0,068.
2. Вариант.
= 0,02+0,03+0,13 = 0,18.
Среднее время восстановления после отказа присоединений:
, час.
1. Вариант.
час.
2. Вариант.
час.
Коэффициент аварийного простоя присоединения:
Ка = wа×Тв.
1. Вариант.
Ка1= 0,068·19,529 = 1,328 о. е.
2. Вариант.
Ка2=0,18·5740802 = 103,464 о. е.
Количество недоотпущенной электроэнергии вследствие отказа схемы присоединения:
DW=Руст×Ка, кВт×ч/год.
1. Вариант.
DW1=32980×1,328=43797,44 кВт×ч/год.
2. Вариант.
DW2=32980×103,464=3412232,72 кВт×ч/год.
Ущерб:
1. Вариант.
У1=У’×DW1=1,3×43797,44=56936,672 руб. /год.
2. Вариант.
У2=У’×DW2=1,3×3412232,72=4435915,536 руб. /год.
Полные затраты по вариантам:
З1=Ен×К1+И1+У1=0,125×9200+579,6+56936,672=58666,272руб. /год.
З2=Ен×К2+И2+У2=0,125·24980+1573,7+4435915,54=4440611,74руб. /год.
Приведенный технико-экономический расчет показал, что наиболее экономичный вариант: З1=58666,272 руб. /год.
Напряженность электромагнитного поля по магнитной составляющей на расстоянии 50 см от поверхности видеомонитора | 0,3 А/м |
Напряженность электростатического поля не должна превышать: | |
- для взрослых пользователей | 20 кВ/м |
- для детей дошкольных учреждений и учащихся средних специальных и высших учебных заведений | 15 кВ/м |
Напряженность электромагнитного поля на расстоянии 50 см вокруг ВДТ по электрической составляющей должна быть не более: | |
- в диапазоне частот 5 Гц - 2 кГц; | 25 В/м |
- в диапазоне частот 2 - 400 кГц | 2,5 В/м |
Поверхностный электростатический потенциал не должен превышать: | 500 В |
Таким образом, принимаем первый вариант.
В систему распределения завода входят распределительные устройства низшего напряжения ППЭ, комплектные трансформаторные (цеховые) подстанции (КТП), распределительные пункты (РП) напряжением 6 кВ и линии электропередач (кабели, токопроводы), связывающие их с ППЭ.
Выбор системы распределения включает в себя решение следующих вопросов:
1. Выбор рационального напряжения распределения;
2. Выбор типа и числа КТП, РП и мест их расположения;
3. Выбор схемы РУ НН ППЭ;
4. Выбор сечения кабельных линий и способ канализации электроэнергии.
6.1 Выбор рационального напряжения распределения электроэнергии на напряжении свыше 1000 ВРациональное напряжение определяется на основании ТЭР и для вновь проектируемых предприятий в основном зависит от наличия и значения мощности ЭП напряжением 6 кВ, 10 кВ, наличия собственной ТЭЦ и величины её генераторного напряжения, а также рационального напряжения системы питания. ТЭР не производится в следующих случаях:
-если мощность ЭП напряжением 6 кВ составляет менее 10-15% от суммарной мощности предприятия то рациональное напряжение распределения принимается равным 10 кВ, а ЭП 6 кВ получают питание через понижающие трансформаторы 10/6 кВ.
-если мощность ЭП напряжением 6 кВ составляет более 40% от суммарной мощности предприятия, то рациональное напряжение распределения принимается равным 6 кВ.
44,1 %
Согласно вышесказанному, рациональное напряжение распределения на данном предприятии принимается равным 6кВ.
6.2 Выбор числа, мощности трансформаторов цеховых ТПЧисло КТП и мощность трансформаторов на них определяется средней мощностью за смену (Sсм) цеха, удельной плотностью нагрузки и требованиями надежности электроснабжения.
Если нагрузка цеха (Sсм i) на напряжение до 1000 В не превышает 150 - 200 кВА, то в данном цехе ТП не предусматривается, и ЭП цеха запитывается с шин ТП ближайшего цеха кабельными ЛЭП.
Число трансформаторов в цеху определяется по выражению:
где: Scм - сменная нагрузка цеха;
Sном. тр. - номинальная мощность трансформатора, кВА.
β - экономически целесообразный коэффициент загрузки:
для 1-трансформаторной КТП (3 категория) β = 0,95;
для 2-трансформаторной КТП (2 категория) β = 0,80‑0,85;
для 2-трансформаторной КТП (1 категория) β = 0,7‑0,75.
Коэффициент максимума для определения средней нагрузки за смену находится по выражению:
Kmax = Кс. / Ки.
Средняя нагрузка за смену определяется по выражению:
Pсм. = Pцеха / Кmax.
Учитывая, компенсацию реактивной мощности, определяем мощность компенсирующей установки: Qк. у. станд.
Средняя реактивная мощность заводского цеха с учетом компенсации, определяется из выражения:
Q'см = Qсм - Qк. у. станд,
где Qк. у. станд - стандартная мощность компенсирующей установки.
Полная мощность, приходящаяся на КТП с учетом компенсации реактивной мощности:
.
Цеховые трансформаторы выбираются по Sсм с учетом Sуд - удельной плотности нагрузки.
Удельная мощность цеха:
S/уд = S/см /F;
где F - площадь цеха .
Результаты расчетов средних нагрузок за наиболее нагруженную смену остальных цехов сведены в таблицу 9.
таб.9
При определении мощности трансформаторов следует учесть, что если Sуд не превышает 0,2 (кВА/м2), то при любой мощности цеха мощность
трансформаторов не должна быть более 1000 (кВА). Если Sуд находится в пределах 0,2-0,3 (кВА/м2) то единичная мощность трансформаторов принимается равной 1600 (кВА). Если Sуд более 0,3 (кВА/м2) то на ТП устанавливаются трансформаторы 2500 (кВА).
В качестве примера определяется число трансформаторов в цехе 8. Так как удельная плотность нагрузки Sуд=0,01 кВА/м<0,2, то целесообразно установить трансформаторы мощностью до 1000 кВА.
Предварительно выбирается 2 трансформатора мощностью по 160 кВА каждый марки ТМ-160/6. Выбранные трансформаторы проверяются по коэффициенту загрузки в нормальном режиме
;
Коэффициент загрузки в послеаварийном режиме:
;
Расчеты по выбору числа и мощности трансформаторов остальных цехов сведены в таблицу 10.
табл.10
Распределение энергии на территории предприятия осуществляем кабельными линиями.
Двух трансформаторные подстанции с потребителями 1 категории запитываются двумя нитями КЛЭП по радиальной схеме. Так же по радиальной схеме запитываются КТП с трансформаторами 2500 кВА.
Двух трансформаторные подстанции с потребителями 2 и 3 категории запитываются двумя нитями КЛЭП по магистральной схеме, а там где это невозможно из-за больших нагрузок - по радиальной схеме.
Для определения расчетной нагрузки кабельных линий необходимо определить потери мощности в трансформаторах КТП (смотри таб.11).
;
Где: ΔРхх - потери холостого хода трансформатора, кВт.
ΔРкз - потери короткого замыкания в трансформаторах, кВт.
n - число трансформаторов.
;
Где: Iхх - ток холостого хода трансформатора, %.
Uк - напряжение короткого замыкания трансформатора, %.
Затем с учетом потерь мощности в трансформаторах находится расчетная мощность, по которой выбирается сечение кабелей
;
Находится ток в нормальном режиме:
где: n - число кабелей, работающих в нормальном режиме;
Sр - мощность, передаваемая кабелем.
Находится ток в послеаварийном режиме:
.
По таблице1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле, марки СШв. Выбор сечения КЛЭП производится в соответствии с требованиями ПУЭ с учетом нормальных и после аварийных режимов работы электрической сети. При проверке сечения кабеля по условиям после аварийного режима для кабелей напряжением до 10 кВ необходимо учитывать допускаемую в течение пяти суток, на время ликвидации аварии, перегрузку в зависимости от вида изоляции (при дипломном проектировании можно принять для кабелей с бумажной изоляцией перегрузку до 25% номинальной).
Поэтому допустимая токовая нагрузка кабеля при прокладке в земле в послеаварийном режиме:
Iдоп. пар=1.25. Iдоп.
Допустимая токовая нагрузка кабеля при прокладке в земле в нормальном режиме:
Iдоп. н. р. =Iтабл.
В качестве примера выбирается сечение кабельной линии ГПП-ТП цех.5.
Находится ток в нормальном режиме:
.
Находится ток в послеаварийном режиме:
.
По таблице 1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле марки СШв сечением F = 70мм2, Iдоп. = 245А.
Допустимая токовая нагрузка кабеля при прокладке в воздухе в нормальном режиме:
.
В послеаварийном режиме:
.
Результаты расчета сведены в таблицу 12,13.
Схема подключения кабелей показана на рисунке 6 и 7.
табл.11
табл.12
табл.13
Рис.6 Трассы КЛЭП 6 кВ.
Коротким замыканием (К. З.) называется всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы, электрическое соединение различных точек электроустановки между собой и землей, при котором токи в аппаратах и проводниках, примыкающих к месту присоединения резко возрастают, превышая, как правило, расчетные значения нормального режима.
Основной причиной нарушения нормального режима работы систем электроснабжения является возникновения К.З. в сети или в элементах электрооборудования. Расчетным видом К.З. для выбора или проверки параметров электрооборудования обычно считают трехфазное К. З.
Расчет токов К.З. с учетом действительных характеристик и действительных режимов работы всех элементов электроснабжения сложен.
Поэтому вводятся допущения, которые не дают существенных погрешностей: Не учитывается сдвиг по фазе ЭДС различных источников;
Трехфазная сеть принимается симметричной;
Не учитываются токи нагрузки;
Не учитываются емкостные токи в ВЛЭП и в КЛЭП;
Не учитывается насыщение магнитных систем;
Не учитываются токи намагничивания трансформаторов.
7.1 Расчет токов короткого замыкания в установках напряжением выше 1000ВРасчет токов короткого замыкания в установках напряжением выше 1000 В имеет ряд особенностей:
Активные элементы систем электроснабжения не учитывают, если выполняется условие r< (x/3), где r и x-суммарные сопротивления элементов СЭС до точки К. З.
При определении тока К.З. учитывают подпитку от двигателей высокого напряжения.
Расчет токов короткого замыкания производится для выбора и проверки электрических аппаратов и токоведущих частей по условиям короткого замыкания, с целью обеспечения системы электроснабжения надежным в работе электрооборудованием.
Для расчета токов К.З. составляем расчетную схему и на её основе схему замещения. Расчет токов К.З. выполняется в относительных единицах.
Принципиальная схема для расчета токов КЗ. и схема замещения представлена на рисунке 8.
Базисные условия: Sб=1000 МВА, Uб1=115 кВ, Uб2=10,5 кВ.
Базисный ток определяем из выражения
кА.
кА.
Сопротивление системы: Хс=
Точка К-1Сопротивление воздушной линии, приведенное к базисным условиям
;
Х0-удельное реактивное сопротивление провода, Ом/км.
l-длина линии, км; Uб - среднее напряжение;
Сопротивления системы до точки К-1
ХК1=Хс+ХВЛ=0,1255+0,143=0,2685;
Начальное значение периодической составляющей тока в точке К-1:
кА.
Принимаем значение ударного коэффициента kуд=1,8, тогда значение ударного тока
кА.
Где Куд - ударный коэффициент тока К. З.2.45 [2] по таблице, кА.
I”по (к-1) - начальное действующее значение периодической составляющей, кА.
Мощность короткого замыкания:
МВА.
Точка К-2.
Точка К-2 расположена на напряжении 10 кВ.
Сопротивление силового трансформатора на ППЭ:
Трансформатор типа ТРДН-25000/110 с расщепленной обмоткой Н. Н.
.
К сопротивлениям до точки К1 прибавляется сопротивление трансформатора.
ХК2=ХК1+Хтр=0,2685+ (0,525+7,35) =8,1135
Ток короткого замыкания от системы:
кА.
В этой точке необходимо учитывать подпитку тока КЗ от синхронного двигателя. Определяется сопротивление подпитывающей цепочки. Сопротивление кабельной линии от двигателей ЦЕХа14 до ППЭ
;
Сопротивление двигателя:
;
Х”d - сверхпереходное индуктивное сопротивление двигателя
Сопротивления Хкл1 приводятся к параметрам двигателя.
Ток подпитки от синхронного двигателя
кА.
кА.
кА.
Принимаем значение ударного коэффициента kуд=1,93, тогда значение ударного тока
кА.
Мощность короткого замыкания:
МВА.
Точка К-3.
Определяется периодическая составляющая тока короткого замыкания в точке К-3.
Сопротивление кабельной линии от шин РУНН ППЭ до РП:
F=240 l=0.175км; Х0=0,071 Ом/км.
ХК3=ХК2+ХКЛ=8,1135+0,0626=8,1761;
кА.
Для проверки выключателя на отходящих линиях от РП, вводного выключателя при К.З. за выключателями необходимо знать подпитку от двигателей.
Ток подпитки от двигателей:
Сопротивление кабельной линии от двигателей ЦЕХа12 (двигатели 6кВ) до ППЭ
;
Сопротивление двигателя:
;
Х”d - сверхпереходное индуктивное сопротивление двигателя
Сопротивления Хкл1 приводятся к параметрам двигателя.
Ток подпитки от синхронного двигателя
кА.
кА.
Полный ток короткого замыкания
=11,2+19,15=30,35 кА;
Приняв ударный коэффициент kуд=1,93, получаем ударный ток К. З.
кА.
Мощность короткого замыкания:
МВА
Точка К-4
Определяется ток К.З. в точке К-4.
Для практических расчетов принято считать, что всё, находящееся выше шин ВН ТП есть система с бесконечной мощностью (Sс=¥; хс =0).
Расчет производится в именованных единицах для ТП-5 (ЦЕХ5)
Сопротивление трансформаторов ТМЗ-1600/6 таблица 2.50 [2]:
Rт=1 МОм; Хт=5,4 МОм;
Сопротивление трансформатора тока таблица 2.49 [2]:
Rт. т=2,7 МОм Хт, т=1,7 МОм;
Для определения сечения шинопровода находится расчетный ток в ПАР:
А.
Выбирается сечение шин:
;
где Ip-расчетный ток в аварийном режиме; Jэк - экономическая плотность тока Jэк=1 А/мм2.
мм2.
Выбираются шины прямоугольного сечения 80х8 с Iдоп. =1320 А. с двумя полосами на фазу длина шины 4м.
Сопротивление шин (R0=0.055 мОм/м Х0=0,126 мОм/м):
Rшин=0,11 мОм; Хшин=0,252мОм
Сопротивление автоматического выключателя: Rавт=0,13 мОм; Хавт=0,07 мОм. Результирующее сопротивление схемы замещения до точки K-4:
мОм.
Ток короткого замыкания:
кА.
Ударный коэффициент kуд=1,4 - для установок до 1000В.
кА.
Мощность короткого замыкания:
Значение токов короткого замыкания по цементному заводу.
Таблица 8.
К-1 | К-2 | К-3 | К-4 | |
I”по, кА | 18,69 | 30,44 | 30,35 | 18,16 |
iуд, кА | 47,6 | 83 | 82,8 | 35,95 |
Sk, МВА | 3724,4 | 332 | 331,17 | 12,58 |
Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-2
мм2
где С - тепловая функция, для кабелей 6 кВ с алюминиевыми жилами и бумажной изоляцией С=85 А. с2/мм2.
Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-3
мм2
По режиму К.З. при напряжении выше 1 кВ не проверяются:
... деловые советы как обязательный образец для управления всеми национализированными заводами Урала. К концу февраля 1918 г. в руки пролетарской власти на Урале перешли 8 горнозаводских округов (36 предприятий черной металлургии) и бывшие казенные металлургические заводы Урала. Накануне первой мировой войны эти заводы производили 39,6 млн. пуд. чугуна и 24,6 млн. пуд. проката, или соответственно ...
... рынки сбыта и обеспечить решение вышеперечисленных задач. Этого можно добиться лишь за счет коренного технического перевооружения и новых технологий. 1.2 Вариант строительства ККЦ № 2 ММК Кислородно-конвертерный цех № 2 ОАО «ММК» предполагается строить на площадке перед имеющимся сортовым станом блюминга № 3. Это позволит значительно сократить время транспортировки горячих блюмов из ...
... со средой осуществляется с помощью внешнего промышленного транспорта через стыковые пункты. Следовательно, состав всей транспортной системы можно представить совокупностью трех подсистем со свойственными им конструктивными особенностями: внешнего промышленного транспорта, транспортных магистралей и пунктов их стыкования. Под пунктом стыкования понимают подсистему транспорта как комплекс ...
0 комментариев