2.1 Гастон Планте

Ученые не раз пытались получить шаровую молнию в лабораторных условиях. Впервые и наиболее успешно это удалось Гастону Планте.

Ученый заряжал соединенные параллельно аккумуляторы от гальванического элемента, а затем при помощи специального переключателя – «реостатической машины» - соединял их последовательно. (Отдельный аккумулятор в среднем дает напряжение 2,5 В, но когда их соединяют последовательно, то напряжения складываются.)

Так Планте удавалось получить батарею с напряжением до 4500 В. При ее разряде через воду на положительном электроде получались устойчивые вращающиеся шары. Направление вращения было случайным, что говорит о том, что оно не связано с действие тока. В то же время при перемещении электрода шары следовали за ним. Это говорит, что они получали энергию от батареи.

Такие огненные шарики Планте уверенно отождествлял с шаровыми молниями и полагал, что шаровая молния – это первичная форма существования «электрической материи», а линейная – лишь цепочка шаровых. Это заявление он подтверждал своими наблюдениями, из которых следовало, что в городе практически при любой грозе можно увидеть шаровую молнию, нужно лишь уметь смотреть.

Планте утверждал, что шаровая молния получает энергию через вихревой столб, по которому на нее стекают заряды из грозовых туч. Сегодня к этому можно добавить то, чего Планте не знал: полный внутри вихревой столб является отличным волноводом, концентрирующим в нижней своей части энергию возникающих при грозе электромагнитных волн[9].

2.2 Никола Тесла – повелитель молний

Идея Теслы была проста и одновременно глобальна: научиться отбирать электричество, преобразовывать его и без проводов передавать в самые глухие уголки земного шара.

«К концу 1898 систематические исследования, проводившиеся много лет с целью усовершенствования метода передачи электрической энергии через естественную среду, привели меня к пониманию трех важных потребностей; Первая — разработать передатчик огромной энергии; вторая — усовершенствовать способы индивидуализирования и изолирования передаваемой энергии; и третья — выяснить законы распространения токов через землю и атмосферу» - Никола Тесла[10].

Проверку своих идей он начал в 1899 году в горном районе Колорадо-Спрингс, известном своими частыми грозами с исключительно мощными молниями. Через некоторое время по словам Теслы он знал о молниях больше, чем знает о них сам Бог. На очереди стояла проверка принципов передачи энергии на дальние расстояния без проводов. С этой целью была построена специальная лаборатория. Вскоре ученый убедился, что электрический заряд может передаваться через землю без проводов и радиоволн[11].

2.3 Современные исследования

На сегодняшнее время эксперименты по созданию шаровой молнии и сравнению ее свойств с природной проводятся на экспериментальном полигоне недалеко от г. Владимир. (Подробнее в Приложении).


Глава III. Практическая часть

Для того, чтобы убедиться в том, что использование энергии шаровой молнии в практических целях действительно выгодно нам нужно:

Оценить энергию шаровой молнии.

Рассчитать мощность исследуемого объекта.

Определить, число шаровых молний, потребуется, необходимых для обеспечения промышленного города.

Оценить количество энергии в шаровой молнии можно по тем последствиям, которые она оставляет после своего исчезновения. Воспользуемся сообщением одного из наблюдателей: «Она оплавила участок батареи диаметром 6 мм, оставив лунку глубиной 2 мм ».

Значит, молния испарила около 0,45 г железа (v=56 мм3, p=7,9*103 кг/м3). Для этого требуется энергия, равная 4 кДж.

Естественно, что не вся энергия шаровой молнии была израсходована на испарение небольшого участка батареи, так что полученный результат можно рассматривать всего лишь как оценку нижней границы энергии молнии: эта энергия оказывается не меньше нескольких килоджоулей.

Вот еще одно из наблюдений шаровой молнии: «Молния диаметром 30 см взорвалась около водопроводного крана. Этот кран представлял собой трубу диаметром 3 см и высотой 80 см. После взрыва труба оказалась скрученной и была покрыта окалиной, хотя и не накалилась докрасна». Чтобы скрутить железную трубу, надо разогреть некоторый ее участок до достаточно высокой температуры. В то же время, как указывает наблюдатель, труба не накалилась докрасна. Поэтому можно предположить, что молния нагрела участок трубы, скажем, на 600 К. Длину этого участка будем полагать приблизительно равной диаметру трубы.

Решим в связи с этим следующую задачу. Сколько энергии требуется для нагревания на ∆T=600 К участка железной трубы длиной l=5 см? Наружный радиус трубы R=1,5 см, внутренний r=1,2 см. удельная теплоемкость железа c=0,71 Дж/(г*К), плотность железа ρ=7,8 г/см3.

Найдем массу трубы:

m=ρ(πR2-πr2)l,

где (πR2-πr2)l – объем трубы

Используя числовые значения величин, получаем m=100 г. Отсюда находим искомую энергию:

W=cm∆T=4,2*104 Дж=42 кДж.

Энергия шаровой молнии может принимать значения от нескольких килоджоулей до нескольких тысяч килоджоулей. Чтобы убедиться в этом решим следующую задачу, основанную на событии, произошедшем в Закарпатье, близ города Перечина:

В августе 1962 года, около 11-12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч: она светилась цветами радуги в течение около 10 секунд. Вода из корыта полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0,3*2,5 метра. Глубина слоя воды – 15 см[12].

Масса воды равна: ρ*V. V=11,3*10-2м3.

Плотность воды – 1*103 кг/м3.

Отсюда получаем массу воды, равную 113 кг

Найдем энергию, которая потребовалась для того, чтобы вода выкипела:

W=cm∆T+Lm

Удельная теплоемкость воды – 4200 Дж/кг*К. Температура кипения воды – 1000С, а температуру воды изначально возьмем примерно равную 180С.

W=299*103 кДж ≈ 300*103 кДж

В условии задачи дано время существования молнии в корыте. В связи с этим найдем мощность молнии:

P=W/∆t. P=30*103 кВт.

Мощность шаровой молнии может быть поистине огромной. Интересно, сколько молний потребуется, чтобы обеспечить промышленный город электроэнергией. Возьмем, например, такой город, как Нижний Тагил и решим следующую задачу:

Рассчитаем, сколько молний потребуется, чтобы обеспечивать Нижний Тагил электроэнергией в сутки. Если в среднем город Нижний Тагил в течение суток потребляет 800*103 кВт. электроэнергии. Мощность шаровой молнии составляет 30*103 кВт.

N=800*103/30*103 кВт = 27

Получив данный результат, можно утверждать, что использование энергии шаровой молнии является вполне реальным и выгодным. Также нужно учесть, что шаровая молния является более безопасной и экологически чистой, чем атомные электростанции.


Заключение

В ходе данной работы нами были исследованы свойства шаровой молнии, ее поведение. На основе рассказов очевидцев, была рассчитана ее энергия и мощность. По полученным результатам можно смело говорить об использовании шаровой молнии. Прежде всего, это касается дешевой электроэнергии. Но главная проблема состоит в том, что мы не умеем удерживать шаровую молнию длительное время. Нам следует продолжать исследования по данной теме.

Несмотря на то, что это явление пока ещё до конца не понято физикой, не стоит относиться к нему как к чему-то крайне необычному, тем более как к сверхъестественному. Это явление до конца не изучено, но активно изучается. На сегодняшний день ясно, что шаровая молния — просто красочное атмосферное явление, проявление атмосферного электричества, и для его объяснения не потребуется привлечение каких-либо кардинально новых физических концепций.

Основной камень преткновения в этих исследованиях — отсутствие надёжной методики воспроизводимого получения шаровой молнии в управляемых, лабораторных условиях. Если бы это было достигнуто, задача была бы практически решена. Поныне в экспериментах удавалось получить нечто, лишь отдалённо схожее с шаровой молнией. И, изучая это «нечто», экспериментаторы пока не могут сказать, изучают ли они саму шаровую молнию или какое-то другое явление. Такое состояние дел в эксперименте и позволяет теоретикам выдвигать совершенно разные (а иногда и самые фантастические) предположения и гипотезы о сущности шаровой молнии.

Что может дать человеку изучение природы шаровой молнии? В настоящее время эти исследования носят фундаментальный характер, то есть пока не разрабатываются способы использования шаровой молнии в практических целях. Однако результаты именно фундаментальных исследований приводит к появлению принципиально новых видов технических устройств, радикальному изменению технологий, появлению новых видов научных знаний.

Однако уже сейчас можно обозначить достаточно весомую перспективу. Это, например, сверхмощное оптическое воздействие на протяженные объекты (в отличие от тонкого лазерного луча).

Это беззеркальные накопители энергии для сверхмощных лазеров на основе закольцовки лучей за счет рефракции.

Это, наконец, новые перспективы в решении проблемы управляемого термоядерного синтеза.


Список литературы

1. Видеофильм Властелин мира. Никола Тесла.

2. Демкин С. Загадка «огненных яблок / С. Демкин // Тайная власть – 2007. - №12. – С.5.

3. Коллекция рефератов и сочинений // Рефераты по точным наукам // Шаровая молния

4. Кунин В.Н. Шаровая молния на экспериментальном полигоне 2000. – С 3-5

5. Ильин. А. Шаровая молния: вопросы без ответов / А.Ильин // Юный техник – 2005. - №5. – С.40.

6. Муранов А.П. В мире необычных и грозных явлений природы // Огненные стрелы небес. 1977. – С. 83

7. Никола Тесла. Лекции и статьи // Передача электрической энергии без проводов 2003. А 153

8. Петрова И. Хоть стой, хоть падай / Петрова И. // Тайны ХХ века – 2006. - №34. – С. 15

9. Славин. С. Охотники за молниями / С. Славин // Юный техник. – 2004 - №11 – С.50.

10. Тарасов Л.В., Физика в природе // Шаровая молния С. 103-111

11. Томилин А. Загадка шаровой молнии / А. Томилин // Заклятие Фавна С. 96

12.Усанин А. Своенравная дочь Перуна / А. Усанин // Чудеса и приключения – 2006. - №9. – С. 41

13. Щелкунов Г. / Шаровая молния: наблюдения и анализ следов / Г.Щелкунов // Наука и жизнь – 2001. - №10 – С.52.

14. Интернет. Федосин С.Г. Электронно-ионная модель шаровой молнии// http://mt.arisfera.info/lightning_articles/lightning_articles10.html#


Тезаурус

Кластер – это положительный ион, окруженный своеобразной «шубой» из нейтральных молекул.

Магнитное поле – вид материи, посредством которого взаимодействуют между собой движущиеся электрические заряды.

Плазма (от греч. plasma — вылепленное, оформленное), ионизованный газ, в котором концентрации положительных и отрицательных зарядов равны

Рекомбинация ионов — образование нейтральных атомов и молекул из свободных электронов положительных атомных или молекулярных ионов (процесс, обратный ионизации).


Приложение

На сегодняшнее время эксперименты по созданию шаровой молнии и сравнению ее свойств с природной проводятся на экспериментальном полигоне (недалеко от г. Владимир), на уникальных крупномасштабных установках, обеспечивающих параметры процессов, близкие к параметрам природных процессов.

На полигоне расположены:

Комплекс по регистрации электрических полей КНЧ диапазона.

Приемно-регистрирующий комплекс документации вариации вертикальной составляющей электрического поля Земли в крайне низкочастотном диапазоне включает в себя около 15 регистраторов вариаций электромагнитного поля Земли (ЭМПЗ).

Систематическая регистрация вариаций ЭМПЗ дает надежду на разработку не только надежного прогноза неблагоприятных периодов с количественной оценкой степени неблагоприятности, но и предсказания самих глобальных явлений (например, землетрясений). В этом главная научная задача круглогодичной работы полигона.

Импульсную компоненту вариаций создают молниевые разряды, поэтому их регистрация также производится попутно.

Одним из интересных и до сих пор загадочных теплоэлектрических явлений в атмосфере считается шаровая молния. Ее природа занимает уму не только физиков-профессионалов, но и широкого круга любознательных людей. Естественно, она должна была попасть в круг полигонных интересов, в результате чего была поставлена задача попытаться создать на полигоне шаровую молнию искусственно.

Ясно, что на полигоне пришлось создать мощные источники электрических импульсов. И хотя их мощность значительно уступает мощности силовой цепи подводной лодки, необходимый результат был получен за счет оптимизации характеристик разряда и конструкции плазменной пушки. Рассмотрим эти источники:

Инерционный копровый накопитель энергии.

Этот накопитель – наиболее надежный и простой в управлении источник электрических импульсов полигона, однако, к сожалению, наименее мощный. Он используется в тех экспериментах, где не требуется большая мощность, но требуется хорошая дозировка получаемой энергии. Основными элементами накопителя являются электромагнит постоянного тока с броневым магнитопроводом и рабочая катушка. Электромагнит под действием силы тяжести падает по направляющим колоннам на соосно расположенную рабочую катушку так, что она входит внутрь электромагнита. При этом вырабатывается электрический импульс колоколообразной формы. Электромагнит массой 1350 кг питается от генератора постоянного тока с силой 500 А. Он поднимается лебедкой с электрическим приводом на высоту 9 м. Масса установки 4 т. Накопитель генерирует импульсы тока с энергией до 50 кДж и длительностью 50-100 мс. Максимальная мощность около 1000 кВт. Таким образом, он дает выигрыш по отношению к мощности электросети приблизительно в 10 раз.


Информация о работе «Шаровая молния как альтернативный источник энергии»
Раздел: Физика
Количество знаков с пробелами: 44282
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
283636
0
0

... в последовательности спектра (красная, оранжевая, желтая, зеленая, голубая, синяя, фиолетовая), однако цвета почти никогда не бывают чистыми, поскольку полосы взаимно перекрываются. Как правило, физические характеристики радуг существенно различаются, поэтому и по внешнему виду они весьма разнообразны. Их общей чертой является то, что центр дуги всегда располагается на прямой, проведенной от ...

Скачать
158652
0
0

... же подтверждают, что Тунгусский феномен – это типичное, хотя и очень значительное аномальное атмосферное и космическое явление, как стыдливо называют ученые давно известные всем "дилетантам" НЛО. При высших формах сознания, при которых возможны макротелекинез, левитация, психосинтез и возможно создание НЛО, Т–слой настоящего (термин Н.И.Кобозева, 1971г.) включает в себя часть тех зон пространства– ...

Скачать
161418
7
3

... и изучения землетрясений во многих странах существует сеть станций непрерывного слежения за сейсмическим состоянием Земли (или, как мы теперь называем, станций сейсмического мониторинга и прогнозирования). На станциях размещаются высокоточные приборы - сейсмографы, регистрирующие малейшие колебания земной поверхности, а также комплекс прогностических методов для предсказания землетрясений с ...

Скачать
29890
0
0

... воздействий на население и окружающую среду с одновременным получением максимальной экономической выгоды. В новых политических и экономических условиях центр тяжести по решению проблем обеспечения безопасности населения и окружающей среды переносится в регионы, которые должны проводить деятельность в этом направлении в соответствии со сложившимися в регионе социально-политическими, экономическими ...

0 комментариев


Наверх