4. Скремблер. Дескремблер

В последовательных каналах передачи данных синхросигнал для ввода последовательных бит на приемной стороне канала формируется непосредственно из принимаемого сигнала. Частота смены символов (1,0) на входе приемника должна обеспечивать надежное выделение тактовой частоты из принимаемого сигнала независимо от структуры исходного сообщения (например, при передаче длинных последовательностей 1 или 0). Поэтому в системах передачи данных исходная последовательность бит часто подвергается определенной обработке. Смысл такой обработки состоит в получении последовательности, в которой статистика появления нулей и единиц приближается к случайной. Одним из способов обработки является скремблирование (перемешивание).

Скремблирование – это обратимое преобразование структуры цифрового потока без изменения скорости передачи с целью получения свойств случайной последовательности. Скремблирование производится на передающей стороне с помощью скремблера (рис.6), реализующего логическую операцию Исключающее ИЛИ для исходной последовательности SI1 и псевдослучайной последовательности (ПСП) Q3. На приемной стороне осуществляется обратное преобразование, выполняемое дескремблером. Структура дескремблера повторяет структуру скремблера. Дескремблер формирует из принятой последовательности бит исходную последовательность.

Скругленный прямоугольник: Рис.6

Основной частью скремблера является генератор ПСП в виде сдвигающего регистра (N-разрядного) с обратными связями, формирующий псевдослучайную последовательность максимальной длины 2N – 1 (М-последовательность).

Различают скремблеры с начальной установкой (рис.6) и самосинхронизирующиеся.

5. Генератор псевдослучайной последовательности

Для генерации М-последовательностей с одним элементом Исключающее ИЛИ получены таблицы подключений входов элемента к выходам Q0,...,QN-1 N-разрядного сдвигающего регистра, обеспечивающих получение псевдослучайной последовательности максимальной длины. Такая таблица приведена на рис.7,а.

На рис.7,б показана схема генератора ПСП при N = 4. Результаты анализа состояний схемы как цифрового автомата сведены в таблицу на рис.7,в. Для каждого текущего состояния дано значение сигнала на входе триггера D0 = Q2Q3, которое в результате поступления тактового импульса C в следующем состоянии фиксируется на выходе Q0. Остальные триггеры работают аналогично – происходит сдвиг кода D0Q0Q1Q2 в следующем состоянии на один разряд вправо. Всего существует 15 различных состояний регистра. Это максимальное число состояний для N = 4 с элементом Исключающее ИЛИ в цепи обратной связи. Следовательно, период ПСП равен 2N – 1, цифры ПСП повторяются через 2N – 1 тактовых импульсов.

Состояние 0000 не может существовать в регистре и в ПСП, так как попадание в него приводит к блокировке регистра. Состояние 0000 не может измениться, поскольку на вход D0 всегда будет подаваться 0. Для вывода регистра из состояния блокировки при включении питания или в результате сбоя можно использовать специальные сигналы начальной установки (стартовые сигналы). На рис.7,б – это сигнал , поступающий на асинхронные входы принудительной установки триггеров в единичное состояние.

Скругленный прямоугольник: Рис.7

Другой способ вывода регистра из состояния блокировки – дополнение цепи обратной связи генератора (рис.7,б) логической схемой самозапуска. Суть самозапуска генератора (рис.7,б) выявляется при анализе карты Карно (рис.7,г) для функции управления входом D0. Карта Карно составлена по таблице состояний генератора ПСП, в которой отсутствует состояние 0000. Поэтому в соответствующей клетке карты стоит знак факультативности , которому соответствует произвольное значение функции D0. Минимизация по единичным значениям функции D0 без включения факультативной клетки в единичные подкубы соответствует доопределению функции D0 = 0 при текущем состоянии регистра 0000, следовательно, и следующим состоянием регистра будет 0000 – регистр заблокирован.

Чтобы не допустить этого, следует доопределить факультативное значение функции единицей, т.е. положить = 1. Таким образом, при состоянии регистра 0000 D0 = 1 (следующим его состоянием будет 1000) блокировка не происходит.

На рис.7,г для такого варианта построения генератора ПСП приведена карта Карно для функции входа D0 . МДНФ уравнения для этой функции (рис.7,г) определяет структуру схемы обратной связи (рис.7,д), обеспечивающей генератору ПСП свойство самозапуска.

Таблица рис.7,в иллюстрирует эффект от использования генератора ПСП в схеме скремблера и дескремблера рис.6. Для примера взят исходный последовательный сигнал SI1, содержащий длинную серию единиц и подлежащий передаче по каналу связи. В результате скремблирования (перемешивания) на приемную сторону поступает сигнал SI2 = SO1, не содержащий длинных серий единиц, имеющий характер псевдослучайной последовательности. Сигнал SO2 на выходе дескремблера, полученный с использованием идентичного передающему генератора ПСП, полностью повторяет исходный сигнал SI1, т.е. SO2 = SI1.


Литература

1.Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для втузов. СПб.: Политехника, 1996.

2.Угрюмов Е.П. Цифровая схемотехника. СПб.: БХВ-Петербург, 2001.

3.Проектирование импульсных и цифровых устройств радиотехнических систем: Учеб. пособие для радиотехнич. спец. вузов / Ю.П.Гришин, Ю.М.Казаринов, В.М.Катиков и др.; Под. ред. Ю.М.Казаринова. М.: Высш. шк., 1985.

4.Потемкин И.С. Функциональные узлы цифровой автоматики. М.: Энергоатомиздат, 1988.

5.Голдсуорт Б. Проектирование цифровых логических устройств: Пер. с англ. М.: Машиностроение, 1985.


Информация о работе «Синтез и анализ последовательностных устройств»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 12407
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
25576
0
9

... видно из примера, при выполнении умножения формируются частичные произведения (произведения множимого на цифры разрядов множителя), которые суммируются с соответствующими сдвигами друг относительно друга. В цифровых устройствах процессу суммирования частичных произведений придают последовательный характер: формируется одно из частичных произведений, к нему с соответствующим сдвигом прибавляется ...

Скачать
20657
1
7

... литературе как "рабочая станция" (PC). Рис. 3. Структура рабочей станции проектирования электронных систем. Рис. 4. Структура ПО САПР. 4. Иерархические уровни представления электронных устройств Основным методом проектирования с применением САПР является блочно-иерархический метод или метод декомпозиции сложного объекта на подсистемы (блоки, узлы, компоненты). В этом случае ...

Скачать
46487
9
40

... можно изобразить отдельно. Формирователь выхода «Равенство кодов» Формирователь выхода «Больше» Формирователь выхода «Меньше». Арифметические устройства Другой класс приборов, используемых в дискретной технике предназначен для выполнения арифметических действий с двоичными числами: сложения, вычитания, умножения, деления. К арифметическим устройствам относятся также схемы, ...

Скачать
37161
5
25

... счётчика. Для указанных в таблице контуров: K2 = Q1J2 = Q14 K3 = Q1Q2J3 = Q1Q2 K4 = 0J4 = Q1Q2Q3 Функциональная схема счётчика синтезируется в соответствии с полученными логическими функциями. Аналогичным образом проводят синтез счётчиков на других типах триггеров тактируемых фронтом импульса и с другими коэффициентами пересчёта. Различие будет заключаться в сигналах, обеспечивающих нужные ...

0 комментариев


Наверх