4.2 Выбор и обоснование применяемой элементной базы

Первоначальным этапом при проектировании проекта является выбор элементной базы для проектируемого радиоэлектронного устройства. На данном этапе выбирается тип, размер радиоэлемента, удовлетворяющий поставленным задачам электрических характеристик, по устойчивости к механическим и климатическим воздействиям, и принятия решения о частичной замене или полной замене предложенных в задании на проект.

При выборе типа резисторов руководствуются рядом требований к их электрическим, конструктивным характеристикам и эксплуатационным показателям:

─ номинального значения сопротивления;

─ допустимая мощность рассеивания;

─ класс точности допустимая погрешность основного параметра;

─ коэффициент температурной зависимости сопротивления;

─ уровень собственных шумов;

─ массогабаритные размеры;

─ возможность формовки выводов для использования в печатном монтаже в том числе монтажа автоматически;

─ показатели устойчивости к климатическим воздействиям ;

─ показатели устойчивости к механическим воздействиям ;

─ показатели надежности.

Таблица 4.2.1 Характеристика чип резисторов RС-0805.

Элемент Мощность Вт Габаритные размеры мм Масса гр.
R1-R5, R7-R20 0.125 L=3; W=1,5; H=0,5I2=0.5 0,015

Рисунок 4.2.1 Внешний вид и геометрические размеры чип резистора.

Рисунок 4.2.2 Внешний вид и геометрические размеры подстрочного резистора.

При выборе типа конденсаторов руководствуются рядом требований к их электрическим, конструктивным характеристикам и эксплуатационным показателям:

─номинальное рабочее напряжение

─частотный диапазон в котором работает конденсатор.

─тангенс угла диэлектрических потерь

─зависимость емкости от рабочего напряжения

Керамический бескорпусной конденсатор 0805.

Технические характерисктики.

Температурный диапазон – 55…+125°С

Рабочее напряжение 50В

Предельное отклонение 5%

Рисунок 4.2.3 Геометрические размеры бескорпусного конденсатора 0805.


Обозначение 0805
L мм 2
W мм 1,25
T мм 1,2

В данном устройстве применяются электролитические конденсаторы одного типа – TANTAL

Таблица 4.2.2 Характеристики конденсаторов TANTAL[9]

Номинальное напряжение 20 В
Допустимые отклонения ёмкости (при f=50 Гц, 20 °С) ±10 %;
Интервал рабочих температур - 60 ...+ 125°С
Срок сохраняемости 25 лет
Тангенс угла потерь, не более 6 %
Ток утечки 10 мкА
Масса не более гр. 0,05
Габаритные размеры L=7.3; B=4.3; H=2.9; P=1.3; W=2.4

k_53_680.gif

Рисунок 4.2.4 Внешний вид и геометрические размеры электролитического конденсатора TANTAL


Интегральный усилитель мощности звуковой частоты TDA2005.

Рисунок 4.2.5 Внешний вид и габаритные размеры TDA2005

Технические характеристики TDA2005:

Напряжение питания 18 В.

Потребляемый ток 3.5 A.

Пиковый потребляемый ток 4.5 A.

Выходная мощность = 90°C 20 Вт.

Диапазон рабочих температур -40…+150 °C.

Звуковой контроллер TEA6320


Рисунок 4.2.6 Звуковой контроллер TEA6320

Таблица 4.2.3 Габаритные размеры звукового контроллера TEA6320.

Технические характеристики TEA6320

Напряжение питания 9 В.

Потребляемый ток 26 мА.

Предел регулировки низкой частоты -15…+15dB

Предел регулировки высокой частоты -12…+12dB

Рабочая температура -40…+85°C

Интегральный радио тюнер TSA6057

 

Рисунок 4.2.7 Звуковой контроллер TSA6057


 Таблица 4.2.4 Габаритные размеры TSA6057.

Технические характеристики TSA6057:

Напряжение питания pin 3 +5В.

pin 16 +9В.

Потребляемый ток 21мА.

Рабочая температура -30…+85°C.

Алфавитно-цифровой ЖК-модуль DV16100 фирмы Data_Vision

 

Рисунок 4.2.8 Алфавитно-цифровой ЖК-модуль

Таблица 4.2.5 электрические параметры ЖК-модуля DV16100

 

Кварцевый резонатор

Технические характеристики:

Точность настройки ±0,003%;

Температурная стабильность ±0,005%

Частота 14,3181 МГц

Емкость Ск 30 рF

Сопротивление Rk 40 Ом

Рисунок 4.2.9

Коаксиальный разъем Производитель Belling-Lee

Рисунок 4.2.10 Производитель Belling-Lee Для кабелей с наружными диаметрами до 4.5 мм.
  Импеданс: 50
  Диэлектрическая прочность: 2 кВ, миним.
  Сопротивление изоляции:

1х109 миним.

  Сопротивление контакта: 5 мл макс.
  Температурный диапазон: от 25 до +70 °C
  Корпус: Никелированная латунь
  Изоляция: Метилпентен (приборный разъем)
  Полиэтилен (кабельный разъем)
  Контактные элементы: Посеребренная латунь (штекер)
    Посеребренная бериллиевая медь (гнездо)

Неполярные конденсаторы

При выборе типа и типоразмера конденсаторов руководствуются следующим рядом показателей, специфических именно для конденсаторов:

- номинальное рабочее напряжение (постоянного, переменного тока или импульсное);

- частотный диапазон, в котором работает конденсатор;

- тангенс угла диэлектрических потерь;

- температурный коэффициент емкости.

Неполярные керамические чип-конденсаторы размера 0805. Внешний вид конденсатора и его размеры приведены на рисунке 10 [6].

 

Рисунок 4.2.10 – Внешний вид и геометрические размеры конденсатора 0805

Параметры диода SMBJ7.5CA

Рисунок 4.2.11 диод SMBJ7.5CA

Uвкл-7.5В

Разъем 5557-5569(90) auto connector


Рисунок 4.2.11 Разъем 5557-5569(90)

Страна производитель: Китай

Модель: 5557-5569(90)

Количество вывадов:6

Максимальное напряжение: 300В

Максимальный ток: 9A

Контактное сопротивление: 0.01

Материал корпуса: Nylon UL94V-2

4.3 Разработка конструкций модулей различных иерархических уровней

Разработка конструкции блока

Разрабатываемый прибор относится к группе возимой РЭА, что говорит о том, что его можно будет транспортировать в те или иные места. Корпус прибора при этом должен быть эргономичным, удобным эксплуатации, прочным и легким. Наиболее легкими являются магний и его сплавы (плотность ρ = 1,74 г/см3 [5]), однако стоимость магния довольно большая. Магний с успехом можно заменить алюминием, к тому же алюминиевые сплавы наиболее часто применяются в качестве материалов для изготовления корпусов. Плотность алюминия немного больше (ρ = 2,7 г/см3 [5]), при этом корпус получится тяжелее, это окупит меньшей себестоимостью готового изделия, особенно в условиях массового производства. Так как нам необходимо в данном изделии получить, как можно меньшую по размеру конструкцию выбираем стальной слав плотностью 7.8 г/см3 . Основание и лицевую панель корпус изготавливаем из листа стали 45 1050-88 толщиной мм. Боковые части корпуса которые так же будет являться радиатором изготавливаем из листа алюминиевого сплава марки АД1 Лист АД 1 М 5×1200×2000 ГОСТ 21631-76. П. толщиной 5 мм, фальшь панель и кнопки изготавливают из ABS-пластика(плотность 1.9 г/см3)[3].

Рисунок 4.3.1 внешний вид цифрового FM-приемника.

Управление цифровым приемником осуществляется с помощью кнопок установленные на лицевой панели, индикация выводиться на графический дисплей. Конструкция выполнена таким образом чтобы обеспечить механическую прочность изделия , с точки зрения ремонтопригодности таким образом чтобы можно было без специального инструмента добраться до печатного узла. Корпус состоит из крышки (рис 4.3.2) прикрепленный к основанию (рис 4.3.3) винтовым соединением. В качестве радиаторов и боковых стенок корпуса к основании прикрепляем металлические пластины из алюминия толщиной 5мм . Для придания внешнего вида на лицевую часть основания устанавливаем фальшь панель (рис. 4.3.4.) с кнопочной панелью для возможности управлением приемником.


Рисунок4.3.2 Крышка.

Рисунок 4.3.3 Основание корпуса.

Рисунок 4.3.4 Фальшь панель.

Массу изделия зависит от материла корпуса, методов соединения рассчитываем по формуле:

 

Мэ=ρ∙v;

где Мэ – масса элемента изделия;

ρ – плотность материала элемента;

v - объем элемента изделия.


где Мосн- масса основания корпус – 175 г.;

Мкр. – масса крышки 60г;

Мр – масса радиаторов 30г;

Мп – масса фальшь панели 20г;

Мп.п. – масса печатной платы 148г;

Мв – масса винтов 15г.

Разработка конструкции печатного узла

Печатную плату с установленными на неё электрорадиоэлементами называют печатным узлом.

Если электрорадиоэлементы имеют штыревые выводы, то их устанавливают в отверстия печатной платы и запаивают. Если корпус ЭРЭ имеет планарные выводы, то их припаивают к соответствующим контактным площадкам внахлест.

ЭРЭ со штыревыми выводами нужно устанавливать на плату с одной стороны (для плат с односторонней фольгой — на стороне, где нет фольги). Это обеспечивает возможность использования высокопроизводительных процессов пайки, например пайку "волной". Для ЭРЭ с планарными выводами пайку "волной" применять нельзя. Поэтому их можно располагать с двух сторон печатной платы. При этом обеспечивается большая плотность монтажа, так как па одной и той же плате можно расположить большее количество элементов.

При размещении ЭРЭ на печатной плате необходимо учитывать следующее:

1)полупроводниковые приборы и микросхемы не следует располагать близко к элементам, выделяющим большое количество теплоты, а также к источникам сильных магнитных полей (постоянным магнитам, трансформаторам и др.);

2)должна быть предусмотрена возможность конвекции воздуха в зоне расположения элементов, выделяющих большое количество теплоты;

3)должна быть предусмотрена возможность легкого доступа к элементам, которые подбирают при регулировании схемы.

При выборе межцентрового расстояния L, высоты Н и других размеров следует учитывать, что для всех типов ЭРЭ ограничено минимальное расстояние от корпуса элемента, на котором можно производить гибку вывода, и минимальное расстояние от корпуса до места приложения паяльника при пайке. Эти ограничения существуют не только для ЭРЭ с аксиальными выводами, но и для всех типов ЭРЭ, подключаемых пайкой.

Навесные элементы необходимо размешать с учетом электрических связей и теплового режима с обеспечением минимальных значений длин электрических связей, количества переходов печатных проводников со слоя на слой, паразитных связей между навесными элементами, необходимо также стремиться к возможно равномерному распределению масс навесных элементов по поверхности платы с установкой элементов с большой массой вблизи мест механического крепления платы. Установочные размеры и варианты установки навесных элементов выбирают в соответствии с действующими стандартами на установку навесных элементов.

В зависимости от конструкции конкретного типа элемента и характера механических воздействий, действующих при эксплуатации (частота и амплитуда вибрации, значение и длительность ударных перегрузок и др.), ряд элементов нельзя закреплять только пайкой за выводы— их нужно крепить дополнительно за корпус.

Крепление за корпус в зависимости от конструкции и массы элементов можно производить приклейкой к плате специальными мастиками или клеями, прилакировкой в процессе влагозащиты печатного узла, заливкой компаундом, привязкой нитками или проволокой, с помощью скоб, держателей и другими методами.

Чтобы обеспечить возможность применения групповой пайки (например, пайки "волной") элементов, устанавливаемых с зазором между платой и корпусом, необходимо предусматривать специальный изгиб выводов.

Этот изгиб удерживает элемент и не дает ему опуститься па плату в процессе установки других элементов до операции пайки.

Обязательно покрытие узлов влагозащитными лаками, которое обеспечивает дополнительное крепление выводов микросхемы к плате.

Если микросхема выделяет большое количество теплоты и находится при повышенной температуре, то существует опасность нагрева корпуса микросхемы выше допустимой температуры.

В этом случае под корпусами микросхем устанавливают теплоотводящую медную шину концы которой должны прилегать к корпусу изделия или другому элементу конструкции, способному отводить выделяемую микросхемой теплоту в окружающее пространство. Медная шипа должна быть изолирована изоляционной прокладкой от печатных проводников, проходящих под микросхемой.

ЭРЭ должны располагаться на печатной плате так, чтобы осевые линии их корпусов были параллельны или перпендикулярны друг другу. Этот обеспечит при необходимости возможность применения специальных машин для автоматической установки и пайки ЭРЭ на печатной плате. На платах с большим количеством микросхем в однотипных корпусах их следует располагать правильными рядами.

Зазор между корпусами должен быть не менее 1,5 мм (в одном из направлений). Указанный зазор необходим для возможности захвата микросхемы специальными устройствами при автоматической установке. Планарные корпуса нужно располагать длинной стороной вдоль направления конвекционного потока воздуха. При этом улучшается охлаждение микросхемы.

Элементы: разъем Х1, Х2,Х3 и микросхема DA1 – будут запаяны вручную паяльником, припой ПОС-61 ГОСТ 21931-76. Элементы поверхностного монтажа будут фиксироваться оплавлением припоя, паяльная паста ПЛ-111 АУЭО.033.012 ТУ.

Так как конструкция состоит из двух плат и выносного элемента (графический дисплей) монтаж которых будем осуществлять с помощью монтажных проводов.

Так как печатные платы имеют малые расстояния между проводниками, то воздействие влаги может привести к таким ухудшениям сопротивления изоляции, при которых будет нарушаться нормальная работа схемы. Поэтому печатные узлы, которые будут работать в сложных климатических условиях, необходимо покрывать слоем лака или специальными покрытиями. Наиболее часто для покрытия печатных плат используют лак ФП-525.

Разработка конструкции печатной платы

В данном курсовом проекте печатная плата будет изготавливаться комбинированным позитивным методом.

Позитивный комбинированный метод является основным для изготовления печатных плат. Преимущество позитивно комбинированного метода по сравнению с негативным является хорошая адгезия проводника, повышенная надежность монтажных и переходных отверстий, высокие электроизоляционные свойства.

Технологический процесс изготовления печатной платы комбинированным позитивным методом состоит из следующих операций [4].

Подготовка информации.

а) подготовка информации

б) разработка принципиальной схемы устройства

в) трассировка на этом этапе принципиальная электрическая схема преобразуется в схему разводки слоев. Очень важно при автоматической разводке правильно выбрать технологические параметры платы (допустимые зазоры, количество слоев, ширина контактных площадок)

Изготовления фотошаблона. На этом этапе производится изготовление фотошаблонов затем используется для формирование топологического рисунка внутренних и внешних слоев печатной платы при экспонировании. Различают позитивные и негативные фотошаблоны.

Резка заготовок.

Листы стеклотекстолита будут нарезаться на заготовки. Очень правильно выбрать размер заготовки т. к. от размера зависит коэффициент использования материала . Резка заготовок будет производиться на гильотинных ножницах.

Изготовление базовых отверстий. На этом этапе в заготовке изготавливается набор базовых отверстий. Тип и размер этих отверстий зависит от выбранной системы базирования. Обычно базовые отверстия круглой формы выполняют сверлением и овальные – вырубкой.

Нанесение пластинчатого фоточувствительного материала на заготовку. Заготовка очищается и приготавливается к нанесению фоторезиста. Этот этап проходит в чистой комнате с желтым освещением. Фоторезист чувствителен к ультрафиолету а при долгом не использовании разрушается.

Экспонирование фоторезиста.

Участок поверхности незащищенные фотошаблоном засвечиваются. Форошаблон снимается. После чего засвеченные участки фоторезиста могут быть удалены химическим путем.

Химическая обработка . Эти операции производятся в установках химической обработки. Существует несколько типов: погружные и струйные. Существуют установки конвейерного типа и с ручной загрузкой.

Проявление. Засвеченные участки фоторезиста удаляются оставляя фоторезист только в тех местах где будут проходить токоведущие дорожки. Основная функция фоторезиста защитить медное покрытие от воздействия травителя.

Травление. Незащищенные фоторезистом печатные проводники удаляються при помощи травителя (хлорное железо) формируя при этом требуемый рисунок проводника.

Удаление фоторезиста. Резист удаляется оставляя открывая не вытравленную медь. Теперь заготовка представляет собой полностью готовый внутренний слой.

Сверление отверстия. Отверстия на плате служат двумя целями: обеспечивать соединения между слоями и для монтажных целей. Платы сверлятся на станках с программным управлением называемым обрабатывающими центрами.

Этот этап является одним из ключевых этапов определяющих точность платы. Точность сверления определяется классом оборудования, а также его настройкой. Металлизация отверстий. Этот этап служит для покрытия отверстий тонким слоем металла. Для металлизации плата помещается в ванну, где плата полностью покрывается тонким слоем палладия.

Химическая обработка.

Нанесение резиста. Плата покрывается резистом, резист засвечивается через фотошаблон, Засвеченные участки удаляются. Этот аналогичен описанный ранее только лишь с одним отличием: резист будет удаляться с тех участков где наноситься слой меди. Следовательно фотошаблон должен быть позитивный.

Электролитическое нанесение меди. Медь наноситься на поверхность до толщины 0.25мм. Осажденная медь на отверстия достаточно толстая необходимая чтобы проводить, необходимый для электролитического осаждения .Оловянно-свинцовое покрытие. Оловянно-свинцовое выполняет две важные функции. Данная смесь выполняет функции резиста для последующего травления, так же защищает медь от травления.

Удаление резиста. Резист удаляется оставляя оловянно-свинцовую смесь и медь. Медь покрытая припоем выдержит процесс травления и образует собой рисунок платы. Нанесение защитного покрытия. Для защиты поверхности платы где в дальнейшем не будет производиться пайка наноситься маска. В данном случае маску будем наносить при помощи трафарет, данный метод не обладает большой точностью, однако материал более пластичен, и у данного процесса стоимость ниже. В качестве материала для печатной платы " Цифрового FM-приемника" выберем Стеклотекстолит - СФ-2-35, толщиной 1,5 мм. Данный материал обладает хорошими физическими и механическими свойствами и полностью удовлетворяет нашим требованиям .

Таблица 4.1. Фольгированные материалы для ПП.

Наименование Марк а Тип печатных плат Толщина материала с фольгой, мм
Фольгированный гетинакс

ГФ-1-35

ГФ-2-35

ГФ-1-50

ГФ-2-50

ОПП и ДПП 1.5; 2; 2,5; 3 1; 1,5; 2; 2,5; 3
Фольгироваиный стеклотекстолит

СФ- 1 -35

СФ-2-35

ОПП и ДПП 0,8; 1; 1.5; 2; 2,5; 3

СФ-1-50

СФ-2-50

0,5; 1; 1,5; 2; 2,5; 3

СФ-1Н-35

СФ-2Н-35

СФ-1Н-50

СФ-2Н-50

0,8; 1; 1,5; 2; 2,5; 3
Фольгированный стеклотекстолит повышенной нагревостойкости СФПН-1-50 ОПП и ДПП с повышенной нагревостойкостью 0,5; 1; 1,5; 2; 2,5; 3
Стеклотекстолит СТЭФ-1-2лк ОПП и ДПП 1; 1,5

В качестве материала для печатной платы " Цифрового FM-приемника" выберем Стеклотекстолит - СФ-2-35, толщиной 1,5 мм. Данный материал обладает хорошими физическими и механическими свойствами и полностью удовлетворяет нашим требованиям .


Информация о работе «Разработка конструкции цифрового FM-приемника»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 38425
Количество таблиц: 10
Количество изображений: 15

Похожие работы

Скачать
111585
12
2

... Подставив значения, получим: . Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий. 3.1 Разработка принципиальных схем синтезатора Цифровой синтезатор частотно – модулированных сигналов позволяет формировать л.ч.м. – сигналы и предназначен для работы в составе л.ч.м. – ионозонда в качестве возбудителя передатчика. На принципиальной ...

Скачать
138399
23
10

... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...

Скачать
168194
12
35

... автоматизированного управления технологическими процессами (АСУТП). Составление технического задания   Рис.9. Схема технологии производства упаковки из картона Разработка упаковки   Верстка графического дизайна   Изготовление макета     Раскладка на лист   ...

Скачать
118994
12
11

... 1.5 Уровни помех и линейных затуханий   1.5.1 Электрические помехи в каналах ВЧ связи по ВЛ Электрические помехи имеются в любом канале связи. Они являются основным фактором, ограничивающим дальность передачи информации из-за того, что сигналы, принимаемые приемником, искажаются помехами. Для того чтобы искажения не выходили за пределы, допустимые для данного вида информации, должно быть ...

0 комментариев


Наверх