5.2 Расчёт элементов печатного монтажа
Выбирается двусторонняя печатная плата с металлизацией сквозных отверстий из стеклотекстолита СФ-2-35Г-1,5 ГОСТ 10316-78 толщиной 1,5 мм (толщина фольги – 0,035 мм). ДПП с металлизацией переходных отверстий отличается высокой трассировочной способностью, обеспечивает высокую плотность монтажа элементов и хорошую механическую прочность их крепления, она допускает монтаж элементов на поверхности и является наиболее распространенной в производстве радиоэлектронных устройств.
Точность изготовления печатных плат зависит от комплекса технологических характеристик и с практической точки зрения определяет основные параметры элементов печатной платы. В первую очередь это относится к минимальной ширине проводников, минимальному зазору между элементами проводящего рисунка и к ряду других параметров.
По ГОСТ 23.751-86 предусматривается пять классов точности печатных плат, которые обусловлены уровнем технологического оснащения производства. Принимаем класс тонности – четвертый. Метод изготовления печатной платы – позитивный комбинированный.
Диаметры выводов для переходных отверстий равны 0,3 мм – 1-я группа; для элементов DA1 и проводов равны 0,7 мм – 2-я группа; для элементов DA7, DA8, X1-X3- 1,1 мм – 3-я группа. Произведем расчет печатного монтажа с учетом созданных групп.
Расчет печатного монтажа состоит из трех этапов: расчет по постоянному и переменному току и конструктивно-технологический.
Исходные данные для расчёта:
1. Imax — максимальный постоянный ток, протекающий в проводниках (определяется из анализа электрической схемы), Imax= 1 A;
2. Толщина фольги, t = 35 мкм;
3. Напряжение источника питания, Uип = 12 В;
4. Длина проводника, l = 0,1 м;
5. Допустимая плотность тока, jдоп = 75 А/мм2;
6. Удельное объемное сопротивление ρ = 0,0175 Ом·мм2/м;
7. Способ изготовления печатного проводника: комбинированный позитивный;
Определяем минимальную ширину, мм, печатного проводника по постоянному току для цепей питания и заземления:
, (5.2.1)
где bmin1 - минимальная ширина печатного проводника, мм;
jдоп - допустимая плотность тока, А/мм2;
t – толщина проводника, мм;
мм.
Определяем минимальную ширину проводника, мм, исходя из допустимого падения напряжения на нем:
, (5.2.2)
где ρ — удельное объемное сопротивление [7], Ом·мм2/м;
l — длина проводника, м;
Uдоп— допустимое падение напряжения, определяется из анализа электрической схемы. Допустимое падение напряжения на проводниках не должно превышать 5% от питающего напряжения для микросхем и не более запаса помехоустойчивости микросхем.
мм.
Определяем номинальное значение диаметров монтажных отверстий d:
, (5.2.3)
где dэ — максимальный диаметр вывода устанавливаемого ЭРЭ, мм;
Δdн.о — нижнее предельное отклонение от номинального диаметра монтажного отверстия, Δdн.о = 0,1 мм;
r — разница между минимальным диаметром отверстия и максимальным диаметром вывода ЭРЭ, ее выбирают в пределах от 0,1 до 0,4 мм.
Примем r = 0,1 мм.
d1 = 0,3+0,1+0,1 = 0,5 мм;
d2 = 0,7+0,1+0,1 = 0,9 мм;
d3 = 1,0+0,1+0,1 = 1,2 мм;
Принимаем для выводов 1-й группы d1 = 0,5 мм; для второй - d2 = 0,9 мм; для третей d3 = 1,2 мм.
Рассчитываем минимальный диаметр контактных площадок для ДПП, мм:
,(5.2.4)
где t — толщина фольги, мм; D1min— минимальный эффективный диаметр площадки, мм:
,(5.2.5)
где bм — расстояние от края просверленного отверстия до края контактной площадки, мм, [7], bм=0,025мм;
Δd и Δр — допуски на расположение отверстий и контактных площадок, мм, [7], δd=0,05мм и δр=0,15 мм;
dmax — максимальный диаметр просверленного отверстия, мм:
,(5.2.6)
где Δd — допуск на отверстие, мм, [7], Δd=0,05мм
Для 1-й группы:
мм;
мм;
мм.
Для 2-й группы:
мм;
мм;
мм.
Для 3-й группы:
мм;
мм;
Максимальный диаметр контактной площадки Dmax, мм:
, (5.2.7)
Для 1-й группы:
мм.
Для 2-й группы:
мм.
Для 3-й группы:
мм.
Определяем ширину проводников bmin, при изготовлении комбинированным позитивным методом, мм:
,(5.2.8)
где b1min — минимальная эффективная ширина проводника b1min=0,38 мм для плат 4-го класса точности.
мм.
Принимаем bmin = max{bmin1, bmin2, bmin3} = 0,4 мм
Максимальная ширина проводников, мм:
(5.2.9)
мм.
Определяем минимальное расстояние между элементами проводящего рисунка.
Минимальное расстояние между проводником и контактной площадкой, мм:
,(5.2.10)
где L0 — расстояние между центрами рассматриваемых элементов, мм, L0 = 1,1 мм;
— допуск на расположение проводников, мм, =0,03.
мм
Минимальное расстояние между двумя контактными площадками, мм:
,(5.2.11)
мм
Минимальное расстоя3ние между двумя проводниками, мм:
,(5.2.12)
мм.
Контактные площадки для поверхностно монтируемых элементов выбираются исходя из их установочных размеров.
Таким образом, параметры печатного монтажа отвечают требованиям, предъявляемым к платам 4-го класса точности. Имеем диаметр отверстия/диаметр контактной площадки (мм) для элементов 1-й группы 0,6/1,15; для элементов 2-й группы – 0.9/1,55; для элементов 3-й группы – 1,2/1,85;. Принимаем ширину печатного проводника равной 0,24 мм, минимальные расстояния между: проводником и контактной площадкой – 0,17 мм; двумя контактными площадками - 0,1 мм; двумя проводниками - 0,42мм.
ЗАКЛЮЧЕНИЕ
При выполнении курсового проекта было спроектировано при помощи пакета программ РСAD-2002 печатной платы программатора, позволяющая автоматически трассировать печатные проводники. Были проведены конструкторские расчеты электрических соединений, компоновочных характеристик доказывающие возможность изготовления программатора в условиях промышленного мелкосерийного производства. Итогом работы явился комплект конструкторской документации, представленный в приложении, содержащий электрическую принципиальную схему, чертеж печатной платы, сборочный чертеж печатного узла САПР P-CAD 2002.
ЛИТЕРАТУРА
1. Журнал "Радио" №5. – М.: Роспечать, 2007. – 41 с.: ил.
2. Каталог "ПЛАТАН". – М.: Платан Компонентс, 2005. – 320 с.: ил.
3. Интернет ресурс: www.platan.ru
4. А.П. Ненашев "Конструирование радиоэлектронных средств", Москва, "Высшая школа" 1990 г.
5. Ю.М. Лахтин, В.П. Леонтьева "Материаловедение", М. "Машиностроение", 1990 г.
6. Анурьев В. И. Справочник конструктора-машиностроителя: В 3 т. Т3. – 8-е изд. перераб. и доп. – М.: Машиностроение, 2001. – 864 с.: ил.
7. Парфенов А.А. Конструирование РЭА: Учебник для радиотехнических специальностей ВУЗов. – М.: Высшая школа, 1989. – 422 с.: ил.
8. Уваров A. P-CAD 2000, ACEEL EDA. Конструирование печатных плат.Учебный курс. - СПб.: Питер, 2001.
9.Грачев А.А. "Конструирование электронной аппаратуры", М., NT Press, 2006
... Подставив значения, получим: . Таким образом, можно сказать, что спроектированное устройство на 44% защищено от вибрационных воздействий. 3.1 Разработка принципиальных схем синтезатора Цифровой синтезатор частотно – модулированных сигналов позволяет формировать л.ч.м. – сигналы и предназначен для работы в составе л.ч.м. – ионозонда в качестве возбудителя передатчика. На принципиальной ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
... автоматизированного управления технологическими процессами (АСУТП). Составление технического задания Рис.9. Схема технологии производства упаковки из картона Разработка упаковки Верстка графического дизайна Изготовление макета Раскладка на лист ...
... 1.5 Уровни помех и линейных затуханий 1.5.1 Электрические помехи в каналах ВЧ связи по ВЛ Электрические помехи имеются в любом канале связи. Они являются основным фактором, ограничивающим дальность передачи информации из-за того, что сигналы, принимаемые приемником, искажаются помехами. Для того чтобы искажения не выходили за пределы, допустимые для данного вида информации, должно быть ...
0 комментариев