РЕФЕРАТ ПО ТЕМЕ:
ЭКСПЛУАТАЦИОННЫЕ ИЗМЕРЕНИЯ КАНАЛЬНОГО УРОВНЯ
Введение
К группе измерений канального уровня можно отнести следующие группы измерений:
- измерения параметров битовых ошибок;
- измерения блоковых ошибок, в том числе ошибок по CRC, непосредственно связанный с паспортизацией каналов систем передачи Е1;
- измерения кодовых ошибок и их влияние на параметры битовых ошибок;
- анализ цикловой и сверхцикловой структуры;
- измерения параметров качества аналоговых сигналов, передаваемых в системе Е1.
Основные стандарты норм на параметры ошибок в цифровых системах передачи
Параметр ошибки, обычно называемый BER (Bit Error Rate), представляет собой основной параметр измерения цифровых систем передачи и коммутации.
Рассмотрим основные стандарты, определяющие параметры и методы измерений ошибок в цифровых системах передачи.
Для отечественных специалистов существенными можно считать три международных стандарта, нашедших отражение в ITU-T G.821, G.826 и М.2100. Рекомендации ITU-T можно условно разделить на долговременные нормы качества цифровых каналов (G.821 и G.826) и оперативные нормы (М.2100). Долговременные нормы ориентированы на анализ качества международных каналов и трактов и требуют долговременного мониторинга параметров качества. Оперативные нормы более ориентированы на решение задач эксплуатации систем передачи и предусматривают кратковременные измерения. Долговременные нормы G.821 и G.826 разделяются по скоростям передачи: G.821 определяет нормы на параметры каналов ОЦК - 64 кбит/с, нормы на параметры качества цифровых систем передачи со скоростями выше 64 кбит/с определены в G.826.
Во-первых, следует отметить, что существуют два метода измерений параметров ошибки: измерение параметров битовой ошибки (BER) и измерение параметров блоковых ошибок (BLER). Измерение параметров битовых ошибок требуют загрузки в канал тестовой последовательности (фиксированной тестовой последовательности или псевдослучайной - ПСП, PRBS) и сравнение последовательности на входе с последовательностью на выходе цифрового канала (синхронизация по тестовой последовательности). В результате измерений получается значение BER. Таким образом, измерение BER всегда делается с отключением цифрового канала от системы передачи. Методы измерения блоковых ошибок связаны с использованием блоков данных. Единичной ошибкой здесь является одна или несколько ошибок в составе блока, таким образом, значения BER и BLER могут не совпадать. Измерения блоковых ошибок возможны в режиме без отключения канала в случае использования различных механизмов применения циклового избыточного кода (CRC) и т.п.
Во-вторых, при измерениях параметров ошибки разделяются на два типа параметров: основные параметры ошибок и производные параметры. Основные параметры непосредственно связаны с фиксированием ошибок и количеством переданной информации (количество переданных битов или блоков, количество ошибочных битов или блоков, BER, BLER). Остальные параметры ошибок являются производными, т.е. они выводятся из основных по определенным алгоритмам. К ним относятся параметры секунд с ошибками, секунд, пораженных ошибками, минут деградации качества, секунд неготовности канала и т.д. Производные параметры не измеряются непосредственно, а вычисляются в процессе измерений по основным параметрам.
1. Параметры ошибок и методы их измерений по G.821
Рекомендация G.821 была сформулирована как нормы на параметры ошибок для международного соединения ISDN. Таким образом, все параметры, регламентируемые этой рекомендацией, относятся к каналу ОЦК, т.е. к каналу 64 кбит/с. В реальной практике измерения по G.821 могут проводиться на скоростях более 64 кбит/с. В этом случае сохраняется логика тестирования и набор измеряемых параметров. Все результаты нормируются относительно скорости канала ОЦК.
Рассмотрим логику тестирования согласно G.821. Рекомендация предусматривает в качестве основного параметра измерение параметра ошибки по битам - BER.
Для нормирования параметров ошибки все каналы были разбиты на три категории качества в соответствии с гипотетической моделью коммутируемого международного канала ISDN.
Рисунок 1 - Разделение работы канала по параметрам его готовности
Для организации измерений предлагался следующий подход. Все время измерений разбивалось на две части: секунды готовности канала (AS, AT) и секунды неготовности канала (UAS, UT) (рис. 1). Секунды неготовности канала начинают отсчитываться после приема 10 последовательных секунд с параметром BER хуже, чем 10-3. Секунды с параметром BER хуже 10-3 считаются секундами неготовности канала. Измерения производных параметров ошибки проводятся только в течении времени готовности канала. В случае наступления времени неготовности канала счет параметров ошибки прекращается.
В результате измерений анализируется три группы параметров: основные параметры измерений, производные параметры, непосредственно используемые в G.821 и дополнительные производные параметры. В табл. 1 указаны параметры, соответствующие каждой группе.
Таблица 1 - Параметры, измеряемые в соответствии с методологией G.821
Основные параметры | Производные параметры, используемые в G.821 | Дополнительные параметры |
EBIT, BITS, BER, ET | UAS(%), AS(%), ES(%), SES(%), ESR, SESR, DM | EFS(%), LOSS, PATL. PATLS |
Измерения основаны на подсчете количества ошибок. Первым шагом идет разделение всего времени проведения измерений на время готовности и время неготовности канала, в результате выделяется параметр UAS. Затем во время готовности канала производится подсчет секунд с ошибками ES, автоматически рассчитывается параметр EFS. Для секунд с ошибками рассчитывается параметр ВЕР и вычисляется параметр SES. На основе анализа SES рассчитывается параметр DM.
Как отмечалось выше, измерения в соответствии с методологией G.821 предусматривают отключение канала и проведение измерений с использованием ПСП (для потока Е1 рекомендовано использование ПСП 215-1).
В этом случае существует три метода организации измерений, представленных ниже.
Наиболее простым способом измерений является измерение по схеме "точка-точка" (рис. 2). Для измерения необходимы два анализатора потока Е1, включенные по схеме с отключением канала, один в качестве генератора тестовой последовательности, другой - анализатора параметров Цифрового канала. Генератор тестовой последовательности посылает в сеть по заданному каналу поток Е1, этот поток проходит через первичную сеть и приходит на анализатор-приемник. Синхронизация тестовой последовательности обеспечивает проведение измерений физического и канального уровней. Для тестирования может использоваться весь поток Е1.
Рисунок 2 - Схема измерений параметров каналов ЦСП типа "точка-точка"Помимо измерений параметров ошибки в процессе тестирования цифровых каналов актуально проведение стрессового тестирования, параметры которого представлены на экране справа. При проведении измерений канального уровня существенны следующие варианты стрессового воздействия:
- внесение битовой (EBIT) или кодовой (ECOD) ошибок;
- имитация проскальзываний в цифровой системе передачи;
- имитация сигналов о неисправностях (LSS);
- имитация неисправностей в линейном сигнале - генерация длинных последовательностей нулей (ALLO) или единиц (ALL1).
В процессе стрессового тестирования анализируется реакция системы передачи на оказываемое воздействие:
- стабильность и скорость восстановления цикловой и сверхцикловой синхронизации;
- возникновение в цифровой системе передачи ошибок CRC и генерация сигналов о неисправности;
- реакция встроенных средств самодиагностики (сенсоров) на имитируемые ситуации в системе передачи, фиксирование неисправностей системой управления первичной сети.
Существенным недостатком описанной схемы является необходимость использования в измерении двух анализаторов.
Этот недостаток устраняется при проведении шлейфовых измерений по схеме. Для измерений устанавливается шлейф через цифровую первичную сеть. Анализатор при этом является одновременно генератором потока Е1. Недостатком схемы является необходимость использования двух цифровых каналов связи для проведения измерений вместо одного. Кроме того, результаты измерений зависят от параметров обоих измеряемых каналов, что затрудняет локализацию участков деградации качества.
... в основу методики и выведена формула для получения количественной оценки уровня защищенности, обеспечиваемого СЗИ. 4. Применение методики определения уровня защищенности и обоснования эффективности средстВ защиты КИС 4.1 Описание защищаемой корпоративной системы Разработанная нами методика позволяет оценить уровень защищенности КИС при определенном наборе средств СЗИ и, соответственно ...
... 29-10 Упражнение 29 29-11 [КС xv] []Приложение А []Ссылки А-1 []Приложение В []Рисунки В-1 []Приложение С []Решения С-1 []Словарь []Сокращения []Индексы [КС xvi] [1]Технология создания сетей ЭВМ [1]Вопросы и ответы []Эта форма поможет вам получить ответ на любой вопрос, возникший в процессе изучения ...
... отключение. Iкз=>k*Iном 301,6 А =>3*40=120 А Вывод: Защита обеспечена. Глава 5. Технико-экономическое обоснование. Целью настоящего дипломного Проекта является проектирование локально-вычислительной сети с использованием технологии Fast Ethernet. Оценка экономической эффективности разрабатываемого проекта производится путем выбора коммутации в локально-вычислительной сети. В связи с ...
... исполнители высокой квалификации; это вполне может быть осуществлено в короткие сроки силами службы эксплуатации. Использование вторичных энергоресурсов для нагрева теплоносителей в системах отопления, вентиляции и кондиционирования воздуха. Использование вторичных энергоресурсов (ВЭР) для теплоснабжения промышленных зданий приобретает все большие масштабы. Экономически это вполне оправдано – ...
0 комментариев