3. Расчет длин пролетов
Расчет длин пролетов на путях станции и перегона.
Определяем длину пролета с Рэ=0
Lмах=2, м.
где: К- натяжение контактного провода, даН/м
Для контактного провода 2МФ-100 К=2000 даН/м
Рк- ветровая нагрузка на контактный провод для расчетного режима.
bкдоп- максимальный вынос контактного провода в середине пролета, м.
γк- прогиб опоры на уровне крепления контактного провода, м
Для расчетного режима γк=0,01 м.
а- величина зигзага, м. а=0,3м
Lмах=2*=119м
Определяем Рэ.
Рэ=, даН/м
где: Рк- ветровая нагрузка на контактный провод для расчетного режима, даН/м
Рт- ветровая нагрузка на несущий трос для расчетного режима, даН/м.
Т- натяжение несущего троса, даН. Для М – 95 Т=1600 даН
К- натяжение контактного провода, даН. Для 2 МФ-100 К=2000 даН
hи- высота гирлянды изоляторов, м. Для неизолированной консоли hи=0,6
gт- результирующая нагрузка в режиме максимального ветра, даН/м.
γт- прогиб опоры на уровне крепления несущего троса, м. Для расчетного режима γт=0,015 м.
γк- прогиб опоры на уровне крепления контактного провода, м. Для расчетного режима γк=0,01м.
gк- вес контактного провода. Для 2 МФ 100 gк=2*0,89 Н/м.
С- длина струны, м.
Определяем длину струны.
С=h-0,115, м
где: h- конструктивная высота подвески, м. По исходным данным h=2 м
gпр- вес проводов, даН/м.
L- длина пролета, м.
То- натяжение несущего троса в беспровесном положении, даН.
С=2 -0,115=0,718м
Рэ= = -0,116 даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=107м
Расчет длин пролетов на путях перегона при насыпи 7м.
Определяем длину пролета с Рэ=0
Lмах=2, м.
Lмах=2*=110м
Определяем Рэ.
Рэ=, даН/м
Определяем длину струны.
С=h-0,115, м
С=2 -0,115=0,718м
Рэ= = -0,136 даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=98м
Расчет длин пролетов на кривой радиусом R1=600м
Определяем длину пролета с Рэ=0
Lмах=2, м.
а- величина зигзага, м. а=0,4м
Lмах=2*=59м
Определяем Рэ.
Рэ=, даН/м
С=h-0,115, м
С=2-0,115=1,508м
Рэ= =-0,082даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=59м
Расчет длин пролетов на кривой радиусом R2=850м
Определяем длину пролета с Рэ=0
Lмах=2, м.
а- величина зигзага, м. а=0,4м
Lмах=2*=69м
Определяем Рэ.
Рэ=, даН/м
С=h-0,115, м
С=2-0,115=1,338м
Рэ= =-0,089даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=67м
Расчет длин пролетов на кривой радиусом R3=1000м
Определяем длину пролета с Рэ=0
Lмах=2, м.
а- величина зигзага, м. а=0,4м
Lмах=2*=73м
Определяем Рэ.
Рэ=, даН/м
С=h-0,115, м
С=2-0,115=1,244м
Рэ= =-0,093даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=71м
Расчет длин пролетов на кривой радиусом R2=850 м при насыпи
Определяем длину пролета с Рэ=0
Lмах=2, м.
Lмах=2*=68м
Определяем Рэ.
Рэ=, даН/м
С=h-0,115, м
С=2-0,115=0.802м
Рэ= = - 0,132 даН/м
Определяем длину пролета с учетом Рэ.
Lмах=2, м.
Lмах=2=66м
Таблица
Место расчета | Длина пролета без Рэ | Длина пролета с Рэ | Окончательная длина пролета |
1. прямая станции и перегона | 119 | 107 | 70 |
2. прямая перегона на насыпе | 110 | 98 | 70 |
3. кривая R1=600м | 59 | 59 | 59 |
4. кривая R2=850м | 69 | 67 | 67 |
5. кривая R3=1000м | 73 | 71 | 70 |
6. кривая R2=850м на насыпе | 68 | 66 | 66 |
Расчет станционного анкерного участка полукомпенсированной рессорной подвески.
Определение длины эквивалентного пролета.
, м
где: li- длина пролета с номером i, м.
n-число пролетов в анкерном участке.
lау=∑li- длина анкерного участка, м.
=57,8 м
Выбор максимального допустимого натяжения н/т и номинального натяжения к/п.
/м /м
Выбор режима с максимальным натяжением несущего троса.
Будем исходить из сравнения эквивалентного пролета с критическим, длину которого определим по формуле:
,
где с – раcстояние от оси опоры до первой простой струны, принимаем равной 10 м. ;
конструктивный коэффициент цепной подвески, определяется по формуле:
где натяжение несущего троса при бес провесном положение к/п примем равной 75% максимального допустимого
максимальное приведенное натяжение подвески:
, даН/м
даН/м;
и - приведенные линейные нагрузки на подвеску соответственно при гололеде с ветром и при минимальной температуре:
, даН/м;
даН/м;
где: - температурный коэффициент линейного расширения материала н/т;
-принимается равным 17*10-6;
расчетная температура гололедных образований, принимается равной –5;
минимальная температура, равна -40;
максимальная температура, равна 40;
м
Так как критический пролет оказался больше эквивалентного, максимальным натяжение н/т будет при минимальной температуре.
Определяем температуру беспровесного положения к/п.
,
где: коррекция натяжения к/п в середине пролета. При двойном к/п принимаем t=100.
Определение натяжения н/т.
При расчетах определяем, что = 1028
Расчет разгруженного н/т.
- вес несущего троса
При значении = 1000
=-40
Меняя значения получаем следующие данные:
Тpx, даН | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 263 |
tx, С0 | -40 | -38.3 | -36.3 | -33.5 | -29.1 | -21.9 | -8.6 | -20.2 | 40 |
По результатам расчетов строится монтажная кривая
Стрелы провеса разгруженного н/т.
При температурах в реальных пролетах анкерного участка.
,
Для пролета м.
Меняя длины пролетов и натяжение троса получаем следующие данные:
tx С | Тх, кг | L=70м | L=60м | L=50м |
Fx | Fx | Fx | ||
-40 | 1000 | 0.521 | 0.383 | 0.266 |
-38.3 | 900 | 0.578 | 0.425 | 0.295 |
-36.3 | 800 | 0.651 | 0.478 | 0.332 |
-33.5 | 700 | 0.744 | 0.546 | 0.379 |
-29.1 | 600 | 0.868 | 0.638 | 0.443 |
-21.9 | 500 | 1.041 | 0.765 | 0.531 |
-8.6 | 400 | 1.302 | 0.956 | 0.664 |
20.2 | 300 | 1.735 | 1.275 | 0.885 |
40 | 263 | 1.98 | 1.454 | 1.01 |
По результатам расчетов строится монтажная кривая
Натяжение нагруженного н/т без дополнительных нагрузок.
Определение натяжений нагруженного (контактным проводом) несущего троса в зависимости от температуры.
где: gо-вес проводов цепной подвески, даН/м
Подставляя в это уравнение различные значения Тх, определим соответствующую им температуру.
При Тх=1600 кг
=(-24)
Далее меняя Тх получаем следующие данные
Таблица
Тх, кг | 1600 | 1500 | 1400 | 1300 | 1200 | 1100 | 1000 | 900 | 800 | 767 |
tx, С | -40 | -36.7 | -32.7 | -27.7 | -21.4 | -13.4 | -2,8 | 11.5 | 31.6 | 40 |
По полученным данным строим график
Определяем стрелы провеса для нагруженного несущего троса без дополнительных нагрузок
, даН/м
- приведенная линейная нагрузка на подвеску без нагрузок
даН/м;
Меняя длины пролета и подставляя различные Tx получаем следуюшие стрелы провеса для несущего троса:
tx С | Тх, кг | L=70м | L=60м | L=50м |
Fx | Fx | Fx | ||
-40 | 1600 | 1.144 | 0.831 | 0.569 |
-36.7 | 1500 | 1.196 | 0.871 | 0.598 |
-32.7 | 1400 | 1.254 | 0.916 | 0.631 |
-27.7 | 1300 | 1.319 | 0.966 | 0.668 |
-21.4 | 1200 | 1.393 | 1.024 | 0.711 |
-13.4 | 1100 | 1.478 | 1.09 | 0.761 |
-2,8 | 1000 | 1.577 | 1.168 | 0.819 |
11,5 | 900 | 1.694 | 1.26 | 0.889 |
31,6 | 800 | 1.836 | 1.373 | 0.975 |
-40 | 762 | 1.956 | 1.448 | 1.094 |
Расчет н/т при режимах с дополнительными нагрузками.
Определение натяжений нагруженного (контактным проводом) несущего троса в зависимости от температуры.
где: t1- минимальная температура, С.
g1-вес проводов цепной подвески, даН/м
l- длина эквивалентного пролета, м
Ет- модуль упругости, кг/мм2
Sт- площадь сечения несущего троса, мм2
Подставляя в это уравнение различные значения Тх, определим соответствующую им температуру.
При Тх=1600 кг
=(-40)
Далее меняя Тх получаем следующие данные
Тх, кг | 1600 | 1500 | 1400 | 1300 | 1200 | 1100 | 1000 | 900 | 800 | 767 |
tx, С | -40 | -36.7 | -32.7 | -27.7 | -21.4 | -13.4 | -2,8 | 11.5 | 31.6 | 40 |
По этим данным строим график
Определение стрел провеса несущего троса для действительных пролетов, входящих в анкерный участок.
, м
где: g- вес проводов контактной подвески, даН/м
gт- вес несущего троса, даН/м
К- натяжение несущего троса, даН/м
Т0- натяжение несущего троса при беспровесном положении, даН/м
L-длина пролета, м
e- расстояние от опоры до первой струны, м
Для L=70 м
при Т=1600 кг
=1,324 м
Для L=60 м
при Т=1600
=0,968м
Для L=50 м
при Т=1600 кг
=0,668м
Определение стрел провеса контактного провода для действительных пролетов входящих в анкерный участок.
, м
Для L=70 м
при Т=1600 кг
=-0,22 м
Для L=60м
при Т=1600кг
=-0,157м
Для L=50 м
при Т=1600 м =-0,105м
Определяем изменение высоты расположения контактного провода у опоры
, м
Для L=70 м
при Т=1600 кг
=-0,089 м
Для L=60м
при Т=1600 кг
=-0,076м
Для L=50 м
при Т=1600 кг
=-0,063м
Подсчитанные данные сносим в таблицу
tx С | Тх, кг | L=70м | L=50м | L=50м | ||||||
Fx | fкх | ∆hех | Fx | fкх | ∆hех | Fx | fкх | ∆hех | ||
-40 | 1600 | 1.324 | -0.22 | -0.089 | 0.968 | -0.157 | -0.076 | 0.668 | -0.105 | -0.063 |
-36.7 | 1500 | 1.368 | -0.187 | -0.079 | 1.001 | -0.133 | -0.067 | 0.692 | -0.089 | -0.056 |
-32.7 | 1400 | 1.416 | -0.151 | -0.066 | 1.037 | -0.108 | -0.057 | 0.717 | -0.072 | -0.047 |
-27.7 | 1300 | 1.467 | -0.114 | -0.052 | 1.076 | -0.081 | -0.045 | 0.745 | -0.054 | -0.047 |
-21.4 | 1200 | 1.523 | -0.074 | -0.036 | 1.118 | -0.053 | -0.031 | 0.776 | -0.035 | -0.037 |
-13.4 | 1100 | 1.585 | -0.032 | -0.016 | 1.165 | -0.023 | -0.014 | 0.81 | -0.015 | -0.025 |
-2.8 | 1000 | 1.653 | 0.013 | 0.007 | 1.217 | 0.009 | 0.006 | 0.848 | 0.006 | -0.012 |
11.5 | 900 | 1.73 | 0.061 | 0.035 | 1.276 | 0.044 | 0.03 | 0.891 | 0.029 | 0.025 |
31.6 | 800 | 1.817 | 0.113 | 0.071 | 1.343 | 0.08 | 0.061 | 0.941 | 0.054 | 0.051 |
40 | 767 | 1.849 | 0.131 | 0.085 | 1.368 | 0.093 | 0.073 | 0.959 | 0.062 | 0.06 |
По табличным данным строим монтажные кривые для несущего троса
Зависимость стрелы провеса несущего троса от температуры:
Зависимость стрелы провеса контактного провода от температуры:
Зависимость изменения конструктивной высоты подвески от температуры:
Расчет опор.
Изгибающие моменты для опор определяем для трех режимов:
1. Максимальный ветер;
2. Гололед с ветром;
3. Режим минимальных температур.
Направление ветра принимается:
1. К оси пути, изгибающий момент «+»;
2. От оси пути изгибающий момент «-».
Расчетные нагрузки действующие на опору в виде изгибающего момента определяется по всей длине пролета.
Для каждой нагрузки плечо определяем по размерам поддерживающих устройств.
Расчет промежуточной опоры.
Рт, Рк – нагрузка ветровые для режима максимального ветра на перегоне с открытого незащищенного места.
Роп – ветровая нагрузка на опору.
Ртиз, Ркиз – горизонтальная нагрузка от изменения направления несущего троса и контактного провода.
Gп – вертикальная нагрузка от веса цепной подвески.
Gкн – вертикальная нагрузка от веса консоли, принимается в зависимости от типа консоли.
Максимальный ветер Gкн. = 70 даН;
Гололед с ветром Gкн. = 90 даН;
hоп – высота опоры 9,6 м.
hк, hт – высота подвеса контактного провода и несущего троса.
hк = 5750 мм; hт = 5750+2000= 7750 мм.
Zкн – плечо веса консоли зависит от длины кронштейна и тяги, 3.4 м.
а – зигзаг контактного провода – 0,3 м.
Г – габарит опоры.
dоп – диаметр опоры 0,29 м – верх,
0,44 м – на УГР.
Все расчетные нагрузки сводим в таблицу
Наименование нагрузок | Расчетные режимы | ||
Гололед с ветром | Максимальный ветер | Минимальная температура | |
Нагрузки от веса проводов цепной подвески g | 2,73 | 2,73 | 2,73 |
Нагрузка от веса гололеда на проводах подвески gг | 0,635 | - | - |
Нагрузки от давления ветра на несущий трос Рт | 0,516 | 0,985 | - |
Нагрузки от давления ветра на контактный провод Рк | 0,493 | 0,814 | - |
Определение нормативных нагрузок действующих на опору.
Расчет нормативных изгибающих моментов в основании опор, по которым осуществляется подбор опор, выполняется по нормативным нагрузкам.
Определение нормативных нагрузок, действующих на опору, производится отдельно для трех расчетных режимов.
Вертикальная нагрузка от веса проводов в даН при гололеде с ветром
Gп = (g+gг)*L+Gиз,
Gп = (2.73+0,635)*70+16=244 даН.
Вертикальная нагрузка от веса проводов при максимальном ветре и минимальной температуре
Gп = g*L+Gиз,
Gп = 2.73*70+16=199 даН.
Где: g – погонная нагрузка от собственного веса проводов подвески (троса контактного провода и струн), даН/м;
gг – погонная нагрузка от веса гололеда на проводах контактной подвески, даН/м;
L – длина пролета на кривой, м;
Gиз – вес гирлянды изоляторов, даН.
Вертикальная нагрузка от веса консоли. Для режима гололеда с ветром к весу консоли нужно прибавить вес гололеда на консоли.
Горизонтальная нагрузка от давления ветра на несущий трос и контактный провод в даН.
Для режима гололеда с ветром
Рт = Ртг*L = 0.516*70 =36.1 даН;
Рк = Ркг*L = 0,493*70 = 34.5 даН;
Для режима максимального ветраРт = Рт max*L = 0.985*70 = 69 даН;
Рк = Рк max*L = 0.814*70 = 57 даН.
В режиме минимальных температур горизонтальная нагрузка от давления ветра на несущий трос и на контактный провод отсутствуют.
Горизонтальная нагрузка от давления ветра на опору в даН.
Режим гололеда с ветром
Роп = Сx*(kU*Uгн)2*Sоп/16 = 0,7*(1,15*17.25)2*3,46/16 = 60 даН;
Режим максимального ветраРоп = Сx*(kU*Uн)2*Sоп/16 = 0,7*(1,15*28.75)2*3,46/16 = 165 даН.
Где: Сx – аэродинамический коэффициент лобового сопротивления, принимаем равным 0,7 для конических опор;
Uгн, Uг – скорость ветра, м/с;
kU – ветровой коэффициент, 1,15;
Sоп - площадь сечения опоры, м2. Для опор типа С(СО) площадь сечения можно принять равной 3,46 м2.
В режиме минимальной горизонтальная нагрузка от давления ветра на опору отсутствует.
Натяжение несущего троса компенсированной подвески не зависит от ветровых и гололедных нагрузок.
Рtminиз = Ргиз = РUmaxиз = T*(Г+0,5D)/L = 1600*(3.1+0.5*0.44)/70 = 76 даН.
Горизонтальная нагрузка от давления изменения направления (излома) контактного провода на кривой, в даН для всех трех режимов будет одинакова, т. к. натяжение контактного провода (К) обеспечивается компенсаторами и величина постоянная.
Ркиз = К*(Г+0,5D)/L = 2000*(3.1+0.5*0.44)/70= 95 даН.
Прежде чем приступить к расчету изгибающих моментов Мо, итоги расчетов нормативных нагрузок действующих на опору сносим в таблицу. При этом величины нагрузок округляем до целых чисел.
Расчетные режимы | Нагрузки | ||||||
Gп | Gкн | Рт | Рк | Роп | Рtminиз | Ркиз | |
Гололед с ветром | 244 | 90 | 36.1 | 34.5 | 60 | 76 | 95 |
Максимальный ветер | 199 | 70 | 69 | 57 | 165 | 76 | 95 |
Минимальная температура | 199 | 70 | --- | --- | --- | 76 | 95 |
Мо (244*(3,1+0,5*0,44)+90*3.4+(36.1+76)*7,75+(34.5+95)*5,75+60*
*(9,6/2))*10-2 =30.2 кНм;
Режим максимального ветра:
Мо (199*(3,1+0,5*0,44)+70*3.4+(69+76)*7,75+(57+95)*5,75+165*
*(9,6/2))*10-2 =36.9 кНм;
Минимальная температура:
Мо= (199*(3,1+0,22)+70*3.4+76*7,75+95*5,75)* 10-2=20.3 кНм.
Выбор типа опор.
Выбор типа опор производим по максимальному изгибающему моменту Мо max. У выбранной опоры допускаемый нормативный изгибающий момент Мно в кНм должен быть равен или больше максимального момента относительно условного обреза фундамента, полученного расчетом
Мно > Мо max.
В качестве консольных промежуточных опор рекомендуется принимать опоры типа С (СО).
Маркировка стойки | Несущая способ-ность стойки (номер) | Норматив-ный изги-бающий момент Мно, кНм | Длина стойки, м | Диаметр стойки | Толщина стенки, мм | ||
У осно-вания, мм | В УОФ, мм | У вер-шины, мм | |||||
СО-136.6 | I | 44 | 13,6 | 492 | 432 | 290 | 60 |
... ) = 240,45 / 2 = 120,23 мм 2 1.2.7. Выбор типа контактной подвески. По рассчитанному сечению S’ эм ( min )= 120,23 мм 2 принимаем стандартное сечение цепной контактной подвески переменного тока ПБСМ – 70 + МФ–100, S п = 132 мм 2 1.3. Проверка проводов контактной сети на нагревание. 1.3.1 Находим расчетную максимальную нагрузку на один километр. k d *А сут *N o рн = 24 * l * ( N пас + N гр ...
... тока линейные разъединители с моторными приводами устанавливают в месте присоединения к контактной сети. На территории заданной станции расположена тяговая подстанция постоянного тока. Продольное секционирование контактной сети выполнено с помощью изолирующих сопряжений. На воздушных промежутках установлены секционные разъединители А, Б, В и Г с моторными приводами нормально отключенные с ...
... . 4.2 Типовые схемы питания и секционирования контактной сети однопутного участка станции с тяговой подстанцией переменного тока При разработке схем питания и секционирования контактной сети электрифицированной линии используют принципиальные схемы секционирования, разработанные на основе опыта эксплуатации с учетом затрат на сооружение контактной сети. Схема секционирования контактной ...
... учетом перспективных) к контактной сети, отсасывающей линии к перемычке между средними точками ближайшей к тяговой подстанции пары дроссель-трансформаторов; - показана продольная линия ВЛ 10 кВ монтируемая с полевой стороны опор контактной сети, и выполнено продольное секционирование; - проведено наименование всех разъединителей контактной сети и ВЛ и нумерация секционных изоляторов контактной ...
0 комментариев