2. Динамика структурных изменений и рассеяние света.
Как уже было отмечено, в магнитной жидкости с микрокапельной структурой в электрическое поле помимо сил поляризационного происхождения существенную роль играют кулоновские силы, обусловленные накоплением заряда на межфазных границах. Вследствие этого, в подобных системах возможно развитие специфических электрогидродинамических неустойчивостей, лимитируемых процессами релаксации заряда, а также формой капель. Электрогидродинамические процессы приводят к изменению структуры магнитной жидкости, что в свою очередь оказывает влияние на магнитные и оптические свойства такой МЖ. Так, например, благодаря этим процессам в магнитной жидкости наблюдается дифракционное рассеяние света, имеющее ряд особенностей [175,176].
Исследование характера электрогидродинамических неустойчивостей и рассеяния света проводилось в тонких слоях (20 -40 мкм) магнитных жидкостей, заключенных между прозрачными стеклами с токопроводящим покрытием. Наблюдение микроструктуры осуществлялось с помощью оптического микроскопа. При исследовании дифракционного светорассеяния применялся гелий-неоновый лазер, луч которого пропускали перпендикулярно плоскости ячейки. Характер рассеяния света наблюдали на экране, а относительную величину интенсивности рассеянного света регистрировали с помощью фотоэлемента и цифрового прибора. Кроме описанной, использовалась также измерительная ячейка, позволяющая создавать электрическое поле, перпендикулярное световому лучу, устройство которой аналогично измерительной ячейке, использованной ранее для исследования компенсации формы капель в сонаправленных электрическом и магнитном полях (рис.2.13).
Рис.2.13. Схема ячейки для исследования деформации микрокапельных агрегатов в электрическом поле; 1 - предметное стекло, 2 - металлические пластины, 3 - магнитная жидкость с агрегатами, 4 -покровное стекло.
В достаточно слабых переменных электрических полях низкой частоты (30 - 200 Гц) магнитная жидкость с микрокапельной структурой становится анизотропной. Результаты оптических наблюдений, как уже указывалось ранее, показывают, что в полях достаточно низкой частоты, когда электропроводность капель ниже, чем окружающей их среды капли сплющиваются вдоль направления электрического поля. В результате возникновения анизотропии структуры в МЖ наблюдается анизотропное светорассеяние. Наблюдающееся при отсутствии поля светлое пятно ("гало") трансформируется в широкую размытую полосу, направленную параллельно малым осям сплющенных капель. На рис. 34 показана зависимость относительной величины интенсивности наблюдаемой светлой полосы от напряженности электрического поля.
Рисунок 34. Зависимость относительной величины анизотропного светорассеяния от напряженности переменного электрического напряжения при частоте 50Гц (10 - начальный фон).
Из приведенного графика видно, что первоначально, при повышении электрического поля происходит увеличение интенсивности анизотропного рассеяния света, что соответствует увеличению деформации капельных агрегатов. Однако, начиная с некоторого, критического значения напряженности, в системе развиваются электрогидродинамические течения, достаточные для разрушения капельных агрегатов и созданной слабыми полями анизотропии структуры. В этом случае наблюдается уменьшение относительной величины анизотропного светорассеяния. Таким образом, при возникновении электрогидродинамической неустойчивости происходит уменьшение структурной, а следовательно и магнитной анизотропии магнитных жидкостей с микрокапельной структурой. Возникновение неустойчивости, как уже указывалось, связано с процессами релаксации заряда в слабо проводящей несущей среде. А.О.Цеберсом при анализе подобных явлений [173] было показано, что в достаточно слабых полях, когда характерное время поворота частицы в вязкой среде велико по сравнению с временем релаксации заряда, ее положение в электрическом поле устойчиво. В противном случае свободные заряды, определяющие ориентацию частиц с наименьшим коэффициентом деполяризации вдоль поля, не успевают перераспределиться по ее поверхности, и развивается неустойчивость. При этом неустойчивость имеет колебательный характер и наступает при
(4.56)
где k0 и k∞ - статическая и высокочастотная поляризуемость (индексы и ║ и обозначают направления вдоль и поперек длинной оси эллипсоида). Для угловой частоты возникающих колебаний анизотропии получено выражение
(4.57)
Согласно проведенных нами расчетов [176], соотношение (4.56) в случае непроводящих сферических частиц, взвешенных в среде с вязкостью η=0,1 Па с и характерным временем релаксации заряда τ = 10 с, что соответствует удельному сопротивлению около 0,1 Ом м, для напряженности поля дает величину 400 кв./м В полях такого же порядка наблюдается развитие электрогидродинамической неустойчивости в эксперименте. Изучение характера неустойчивости осуществлялось с помощью наблюдений в микроскоп, которые выявили на поверхности слоя жидкости подвижную сотовую структуру, характерную для неустойчивости Бенарда.
Повышение частоты электрического поля, направленного перпендикулярно плоскости тонкого слоя магнитной жидкости с микрокапельной структурой, приводит сначала к прекращению вихревых течений при f=3 кГц и появлению структурной сетки ветвистого, затем лабиринтного типа. При достаточно высокой частоте (f> 10 кГц) такая структура распадается на отдельные цилиндрические агрегаты, оси которых перпендикулярны плоскостям электродов. Интерес представляют наблюдения трансформации структуры при последующем понижении частоты. В этом случае из цилиндрических образований вновь развивается лабиринтная структура, распадающаяся при продолжении снижения частоты на множество более тонких, на фоне которых образуются крупные гантелеподобные агрегаты. При достижении частоты электрического поля 3 кГц происходит быстрый, взрывоподобный распад агрегатов, после чего во всем объеме слоя МЖ развивается вихревая электрогидродинамическая неустойчивость. Описанные структурные изменения проиллюстрированы на рис. 35.
Рисунок 35. Динамика структурных превращений в магнитной жидкости с микрокапельной структурой в электрическом поле; а - f=20 кГц, б - f=10 кГц, в- f=9 кГц, г - f=6 кГц, д - f=l кГц.
Характер структурных превращений при изменении частоты электрического поля подтверждает их связь с процессами релаксации заряда, ориентации и формы микрокапель. Отметим, что при достаточно большой частоте форма капель определяется только поляризационными эффектами вследствие отсутствия движения свободных зарядов, и в этом случае в тонких слоях МЖ развивается гексагональная структура, теоретическая интерпретация образования которой может быть построена по аналогии с интерпретацией образования подобной структуры в постоянном магнитном поле [163-165] .Структурные превращения в тонких слоях подобных магнитных жидкостей в электрическом поле определяют характер наблюдающегося при этом дифракционного светорассеяния. Изучение этого явления проведено с помощью установки, схема которой приведена на рис.36, при этом использовалась ячейка, представляющая собой два плоских стекла с токопроводящим покрытием.
Рисунок 36. Схема установки для исследования светорассеяния тонкими слоями магнитных жидкостей; 1 -лазер ЛГ-78, 2 - ячейка с магнитной жидкостью, 3-термостатирующая рубашка, 4 - катушки Гельмголь-ца, 5 - фотоприемник.
При достаточно высоких частотах (f > 10 кГц), когда структура представляет собой лабиринтную, а затем гексагональную систему вытянутых вдоль поля микрокапель, наблюдается дифракционная картина в виде светлого кольца, диаметр которого зависит от величины напряженности и частоты электрического поля. Анализ таких, экспериментально полученных зависимостей позволяет оценить изменение характерного структурного параметра решетки. При понижении частоты кольцо исчезает, а затем появляется вновь при наступлении электрогидродинамической неустойчивости. Однако, природа рассеяния света наблюдающегося благодаря вихревым течениям имеет существенное отличие от дифракционных эффектов на структурных образованиях. Как видно из схематического представления структуры электрогидродинамических вихревых течений (рис.37), скорость жидкости в различных областях слоя жидкости различна и изменяется от максимального значения на окраинах вихрей до нуля в их центрах.
Рисунок 37. Характер вихревого движения МЖ в электрическом поле.
В соответствии с этим изменяется и коэффициент преломления жидкости. А так как размеры вихрей одинаковы (о чем свидетельствует наблюдающаяся на поверхности слоя сотовая структура с одинаковыми размерами сот), то и размеры участков с одинаковым коэффициентом преломления также одинаковы и упорядочены в пространстве. В результате этого, систему микровихрей можно уподобить системе линз, прохождение через которую параллельного пучка света и приводит к наблюдаемому оптическому эффекту. При этом, в соответствии с колебательным характером электрогидродинамической неустойчивости в течение некоторого переходного периода после включения поля наблюдается колебание интенсивности кольца (рисунок 38).
Рисунок 38. Зависимость интенсивности дифракционного кольца, наблюдающегося при прохождении луча лазера через слой МЖ, от времени после включения электрического поля.
Частота пульсаций интенсивности дифракционного кольца существенным образом зависит от величины напряженности электрического поля (рис.39).
Рисунок 39. Зависимость частоты пульсаций дифракционного кольца от напряженности электрического поля .
Анализ полученной функциональной зависимости позволил установить, что в начальном интервале исследованных значений напряженности поля она является квадратичной, однако ее вид изменяется при более высоких значениях Е (свыше 1,5·103 кВ/м) .
Следует отметить, что обнаруженная электрогидродинамическая неустойчивость в структурированной магнитной жидкости имеет отличительную особенность, связанную с возможностью регулирования ее нарастания с помощью дополнительного воздействия магнитным полем. Иллюстрацией этого утверждения может служить график зависимости частоты пульсации дифракционного кольца от напряженности постоянного магнитного поля, приведенный на рис.4.21.
Рисунок 40. Зависимость частоты пульсаций дифракционного кольца от напряженности постоянного магнитного поля (подробные пояснения в тексте).
... полученных в ходе выполнения настоящей работы магнитных жидкостей (с магнитными оксидами железа в качестве дисперсионной фазы). Применение магнитных жидкостей позволяет варьировать свойства данных сорбентов в широких пределах. ü Методом электронно-микроскопического исследования показано, что разработанный способ получения магнитных сорбентов обеспечивает равномерное распределение частиц ...
... коэффициента деполяризации от концентрации. Одним из возможных путей изучения механизма светорассеяния является исследование динамики рассеяния света в импульсных электрических и магнитных полях. Схема экспериментальной установки, предназначенной для изучения процессов рассеяния света магнитной жидкостью в импульсных магнитных полях, представлена на рисунке 4. 3 2 ...
... контактов обеспечивается выбором их материала и конструкции при использовании одноступенчатой системы. В заключение отметим, что в настоящее время начинают широко применяться электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме. Жидкометаллические контакты? Наиболее характерные недостатки твердометаллических контактов следующие: 1. С ростом ...
... пропорциональности V называется коэффициентом Верде [9, с. 373]. Постоянная Верде зависит от свойств вещества, температуры и частоты света [1, с.78]. 2.3 Метод лоренцевой электронной микроскопии При исследовании доменной структуры тонких ферромагнитных пленок, как и в случае массивных ферромагнетиков, могут быть использованы методы порошковых фигур и магнитооптический эффект Керра. Для ...
0 комментариев