1.2 Срібловмісні фотоматеріали

Сенситометричні і структурнорізкісні показники срібловмісних фотоматеріалів залежать в основному від розмірів, форми і складу мікрокристалів AgHal, а також умов їх хімічної або спектральної сенсибілізації.

Всі галогеносрібні фотоматеріали складаються зі світлочутливих (емульсивних) і додаткових (допоміжних) шарів, нанесених на підкладку (Рис.1.2.1).

Рис1.2.1. Будова чорно-білих негативних і позитивних фотоплівок:1.захиний шар;2-світлочутливий шар; 3-підшар; 4-підкладка; 5-протискручующий антистатичний безкольоровий лаковий шар.


Основою всіх фотоматеріалів є світлочутливий шар товщиною 3-30 мкм, який є суспензією мікрокристалів AgHal в розчинах желатину, що пов'язують – водних, ефірах целюлози, агарі, Альбуміні і ін. Нанесена на підкладку і висушена фотоемульсія утворює світлочутливий шар фотоматеріалів. Концентрація желатину у фотоемульсіях складає зазвичай 5 - 10% по масі, концентрація AgHal (у перерахунку на металеве срібло) – 30-150 г. Ag на 1л. об'єму фотоемульсії. Середні лінійні розміри мікрокристалів 0,01-10 мкм, їх кількість в 1см3 – 1010-1016.

Поверхнева концентрація AgHal (у перерахунку на срібло) від 0.1 г./м2 у малочутливих фотоматеріалах до 5-10 г./м2 у високочутливих негативних фотоматеріалах і до 10–35г./м2 – в радіографічних матеріалах. У світлочутливому шарі фотоматеріалів міститься до 40-60% AgHal.

Підкладкою для різних фотоматеріалів можуть служити скляні пластинки товщиною 0,8-5 мкм (і більше), гнучкі полімерні плівки з триацетату целюлози товщиною 60–220 мкм або поліетилентерефталату товщиною 25-175 мкм. Для додання фотоматеріалам високих фізико-механічних, протиореольних, антистатичних і ін. властивостей на підкладку і світлочутливі шари зазвичай наносять допоміжні і додаткові шари: підшар, захисний, протиореольний, такий, що протискручує, антистатичний, фільтровий, проміжний, восковий і ін. Підшар – допоміжний шар товщиною 0.5-1 мкм. нанесений на підкладку в цілях забезпечення міцного зчеплення (адгезії) світлочутливого шару з підкладкою. Підшар для фотоплівок містить колоїдний розчин желатин у воді, органічний розчинник, підрозчинювальний полімер підкладки, і органічну кислоту, що стабілізує колоїдний розчин желатину. Підшар для фотопластин містить, крім того, рідке скло.

Захисним шаром є шар сильно задубленого желатину з добавкою синтетичного полімеру (наприклад, латексу) товщиною 0,5-1,5 мкм. Він наноситься на поверхню емульсивного шару фотоплівки і оберігає його від механічних пошкоджень і дії навколишнього середовища.

Для зменшення ореолів віддзеркалення в негативних фотоплівках і фотопластинах під світлочутливий шар або на зворотну сторону підкладки наносять протиореольний лаковий або желатиновий шар, що містить плівкотвірну речовину і фарбник або пігмент (наприклад, сажу), які обезбарвлюються або вимиваються в процесі обробки фотоматеріалів, інакше вони зроблять фотошаблон непрозорим. Желатиновий протиореольний шар, нанесений на зворотну сторону підкладки, служить також і шаром, що протискручує. Антистатичний шар – допоміжний шар товщиною 0,5-1 мкм; є шарами полімерів з добавками електролітів, електропровідних наповнювачів (високодисперсні сажа, графіт і ін.), ПАВ і інші з'єднання, здатних поглинати з повітря заряджені частинки, нейтралізуючи заряд фотоматеріалів, або вологу, що підвищує його поверхневу провідність.[3]

Фільтровий шар служить для поглинання небажаних променів світла, що діють на лежачі під ним світлочутливі шари.

При зберіганні фотоматеріалів спостерігається їх старіння, що полягає в зменшенні світлочутливості і збільшенні щільності вуалі. Кожен вид фотоматеріалів характеризується гарантійним терміном зберігання, впродовж якого може спостерігатися падіння чутливості і зростання вуалі, що необхідно враховувати при експонуванні і обробці. Чим вище світлочутливість фотоматеріалу, тим менше термін їх зберігання. Фотоматеріали необхідно зберігати в оригінальній заводській упаковці при зниженій температурі, що не перевищує 8°С, і відносній вологості 40-60%. Вони повинні бути захищені від дії агресивних газів, рентгенівського і радіоактивного випромінювання, механічних пошкоджень. Для тривалого зберігання чорно-білих фотоматеріалів рекомендується температура 4-50С.

Власна спектральна чутливість галогенідів срібла має максимум на довжині хвилі 545 нм і прийнятна тільки для короткохвильового випромінювання з довжиною хвилі, меншої 520 нм.

Оскільки для виготовлення фотошаблонів останнім часом використовують лазерні фотоплоттери, спектральну чутливість фотоплівок пристосовують до випромінювання відповідного лазера.

Під час експозиції кристали абсорбують фотон світла, його енергія використовується для формування металевого срібла на світлочутливому центрі. Абсорбція більшої кількості фотонів приводить до більшого відновлення металевого срібла. Коли число атомів металевого срібла досягне від 4 до 10, кристал фіксує латентне (приховане) зображення. Це таке латентне зображення, яке при проявці відновлює металеве срібло у всьому об'ємі кристала. Розмір експозиції фотоплівки повинен бути таким, щоб досягти оптимальних результатів. Якщо оригінал – негатив або фотоплівка експонується на фотоплоттері, великі експозиції додаватимуть ширину лінії і зменшуватимуть ширину пробільних місць. Навпаки, маленькі експозиції зменшать лінії і їх оптичну щільність. Після експозиції фотоплівка повинна бути проявлена. Це чотириступінчаста процедура, звичайна у фотопроцесах. Для ілюстрації показана послідовність процесів. Експоновані кристали проявляють своє латентне зображення.[1] Перший процес називається проявленням (Рис.1.2.2). Тут експоновані кристали галоїдного срібла перетворяться в металеве срібло. Приховане зображення діє як каталізатор в реакції відновлення, так що забезпечується різниця між експонованими і не експонованими кристалами. Процес перетворення кристала, що одного разу почався, закінчується ефектом з посиленням зображення більш ніж в 10 млн. разів.

Проявка фотоплівки повинна забезпечити оптимальні результати. Перепроявлення робить лінії широкими з розпливчатими краями. Це також приводить до утворення щільної вуалі на пробільних місцях. Недопроявлення створить тонкі лінії і низьку оптичну щільність зображень. Зазвичай процес проявки контролюється призначеним для цього процесором.


Рис1.2.2. Активація кристалів AgHal освітленні: а)часткове відновлення металічного срібла із AgHal; б)утворення прихованого зображення.

Тепер можна побачити проявлене зображення, утворене металевим сріблом. Неекспоновані кристали, не активовані світлом, не відновлені до металевого срібла в процесі проявки (Рис.1.2.3).

Рис1.2.3. Проявлення прихованого зображення: а)відновлення металічного срібла в активованих світлом кристалах і відсутність процесів відновлення в неекспонованих частинках; б)відновлення конглометра кристалів в об’ємі фотоемульсії при проявленні.

Але це зображення ще не стійке. Щоб зробити зображення стійким, фотоплівка повинна піддатися процесу фіксації, при якій з фотоемульсії видаляються кристали галоїдного срібла (рис.1.2.3). В процесі обробки у фіксуючому розчині тіосульфат амонія перетворює ці кристали на декілька розчинних солей, які видаляються з емульсії. Малюнок з металевого срібла не зачіпається на цій стадії. Фіксація – некритична операція. Неможливо перетримати фотоплівку у фіксуючому розчині. Правда, попадаються плівки, у яких при передержці світлі області набувають сірого відтінку. При недостатній витримці або збідненому розчині фіксажу фотоплівка при виході з процесора може демонструвати молочно-білі відтінки там, де вона повинна бути чистою.

Прояснимо цю ситуацію. При виготовленні фотошаблону проявка – процес, при якому початі при експозиції хімічні зміни посилюються і розширюються. При експонуванні сухого плівкового фоторезиста хімічний процес завершується при експозиції, і після неї не потрібна додаткова обробка для хімічних перетворень. Коли технологи говорять про проявку фоторезиста, вони мають на увазі його селективне видалення із заготовки плати. Це аналогічно фіксації зображення на срібловмісних фотоматеріалах, коли з емульсії видаляють неекспоноване галоїдне срібло.

Отже, в результаті операції фіксації металеве срібло залишається в місцях, де воно було експоноване. Неекспоноване галоїдне срібло, перетворене в розчині з'єднання, йде з желатинового шару в розчин. Оскільки цей процес дифузійний, для нього потрібний час.

Після проявки і фіксації, фотошаблон повинен бути добре промитий для видалення побічних хімічних продуктів. Якщо вони все ж таки залишаться, при сушці вони проявлять себе у вигляді численних кристалів, які можуть зруйнувати желатиновий шар, зробити його недостатньо прозорим.

Завершуючий процес – сушка, в процесі якої випаровується вода. Очевидно, що желатиновий шар, який почав набухати вже при першому зануренні в проявник, і при зволоженні збільшуватиметься приблизно на одну десяту свого розміру. Поліефірна основа також збільшуватиме свої розміри при мокрій обробці в результаті абсорбції вологи. В результаті відбуваються деякі зміни розмірів фотошаблонів.[4]


Информация о работе «Фізико–технологічні основи фотолітографії»
Раздел: Физика
Количество знаков с пробелами: 51546
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
63441
0
4

... (задаючий) показує, яким чином виконуються помітки суміщення й обов'язкові для складних приладів тестові структури, що дозволяють перевіряти роздільну здатність фотолітографії, технологічні параметри (поверхневий­ опір, дефекти окисла) і електричні параметри пристрою. До другого виду відносяться вказівки про методику і критерії контролю характеристик виготовлених шаблонів: розмірів, сумісності, ...

Скачать
31732
0
3

... напилення резистивної плівки, а також контактних майданчиків і провідників через маску; фотолітографія резистивного шару; нанесення захисного шару. [1]   РОЗДІЛ 3. МЕТОДИ МЕТАЛІЗАЦІЇ ІНТЕГРАЛЬНИХ СХЕМ 3.1 Термічне (вакуумне) напилення Схема цього методу показана на рис 3.1. Металевий або скляний ковпак 1 розташований на опорній плиті 2. Між ними знаходиться прокладка 3, що забезпечує пі ...

Скачать
35866
22
41

... 350 - 2000 ppm AS-MLC /AppliedSensor Inc. CO 0.5 - 500 ppm AS-MLK /AppliedSensor Inc. CH4 Від 0.01 до 4%   2. Сучасні датчики газів, та методи їх отримання   2.1 Нові матеріали та наноструктури – перспективна база елементів для датчиків газів   В зв’язку з інтенсивним розвитком виробництва поверхневих датчиків газів, досліджуються придатні для їх побудови сучасні напівпрові ...

Скачать
45145
1
13

... і габарити і споживана потужність. І тут, можливо, відкриваються широкі перспективи для органічних електролюмінісцентних індикаторів. Не випадково великий інтерес до них проявляють японські фірми — провідні світові постачальники плоских пристроїв відображення інформації. На фірмі Sanyo Electric на основі матеріалу з нерегулярною молекулярною структурою, випромінюючого в широкому спектральному ді ...

0 комментариев


Наверх