3.4 выбор аппаратурных средств и спецоборудования.

 

Общие сведения.

Анализ алгоритмов обработки данных метода ОГТ определяет основные требования к аппаратуре. Обработка , предусматриваю­щая выборку каналов (формирование сейсмограмм ОГТ) , АРУ , введение статических и кинематических поправок, может выпол­няться на специализированных аналоговых машинах. При обра­ботке , включающей операции определения оптимальных статиче­ских и кинематических поправок , нормирование записи (ли­нейное АРУ) , различные модификации фильтрации с вычислением параметров фильтров по исходной записи , построение скоростной модели среды и преобразование временного разреза в глубинный , аппаратура должна обладать широкими возможностями , обеспечи­вающими систематическую перенастройку алгоритмов. Сложность перечисленных алгоритмов и , что особенно важно , их непрерыв­ное видоизменение в зависимости от сейсмогеологической характе­ристики исследуемого объекта обусловили выбор универсальных электронно-вычислительных машин в качестве наиболее эффектив­ного инструмента для обработки данных метода ОГТ.

Обработка данных метода ОГТ на ЭВМ позволяет оперативно реализовать полный комплекс алгоритмов , оптимизирующих про­цесс выделения полезных волн и их преобразование в разрез. Широкие возможности ЭВМ в значительной степени определили применение цифровой регистрации сейсмических данных непо­средственно в процессе проведения полевых работ.

Вместе с тем в настоящее время значительная часть сейсмиче­ской информации регистрируется аналоговыми сейсмическими станциями. Сложность сейсмогеологических условий и связанный с ними характер записи, а также тип аппаратуры , используемый для регистрации данных в поле , определяют процесс обработки и тип обрабатывающей аппаратуры. В случае аналоговой регистрации обработка может выполняться на аналоговых и цифровых машинах , при цифровой регистрации - на цифровых машинах.

Система для цифровой обработки включает универсальную ЭВМ и ряд специализированных внешних устройств. Последние предназначены для ввода - вывода сейсмической информации , выполнения отдельных непрерывно повторяющихся вычислитель­ных операций (свертка , интеграл Фурье) со скоростью , сущест­венно превышающей скорость основного вычислителя , специали­зированных графопостроителей и просмотровых устройств. В ряде случаев весь процесс обработки реализуется двумя системами , использующими в качестве основных вычислителей ЭВМ сред­него класса (препроцессор) и ЭВМ высокого класса (основной процессор). Система , базирующаяся на ЭВМ среднего класса , применяется для ввода полевой информации , преобразования форматов, записи и ее размещения в стандартной форме на накопи­теле магнитной ленты (НМЛ) ЭВМ , воспроизведения всей инфор­мации с целью контроля полевой записи и качества ввода и ряда стандартных алгоритмических операций , обязательных для обра­ботки в любых сейсмогеологических условиях. В результате обра­ботки данных на выходе препроцессора в двоичном коде в формате основного процессора могут быть записаны исходные сейсмические колебания в последовательности каналов сейсмограммы ОПВ и сейсмограммы ОГТ , сейсмические колебания , исправленные за величину априорных статических и кинематических поправок. Воспроизведение трансформированной записи помимо анализа результатов ввода позволяют выбрать алгоритмы последующей обработки , реализуемой на основном процессоре , а также определить некоторые параметры обработки (полосу пропускания фильтров , режим АРУ и т. д.). Основной процессор , при наличии препроцессора , предназначен для выполнения главных алгорит­мических операций (определение скорректированных статических и кинематических поправок , вычисление эффективных и пластовых скоростей , фильтрация в различных модификациях , преобразо­вание временного разреза в глубинный). Поэтому в качестве основного процессора используются ЭВМ с большим быстродей­ствием (106 операций в 1 с), оперативной (32—64 тыс. слов) и промежуточной (диски емкостью 107 - 108 слов) памятью. Исполь­зование препроцессора позволяет повысить рентабельность обра­ботки за счет выполнения ряда стандартных операций на ЭВМ , стоимость эксплуатации которой существенно ниже.

При обработке на ЭВМ аналоговой сейсмической информации обрабатывающая система оснащается специализированной аппа­ратурой ввода , главным элементом которой является блок преобра­зования непрерывной записи в двоичный код. Дальнейшая обра­ботка полученной таким образом цифровой записи полностью эквивалентна обработке данных цифровой регистрации в поле. Использование для регистрации цифровых станций, формат запи­си которых совпадает с форматом НМЛ ЭВМ, исключает необходимость в специализированном вводном устройстве. Фактически процесс ввода данных сводится к установке полевой магнитофон­ной ленты на НМЛ ЭВМ. В противном случае ЭВМ оснащается буферным магнитофоном с форматом , эквивалентным формату цифровой сейсмостанции.

Специализированные устройства цифрового обрабатывающего комплекса.

Прежде чем переходить к непосредственному описанию внеш­них устройств , рассмотрим вопросы размещения сейсмической информации на лепте ЭВМ (магнитофона цифровой станции). В процессе преобразования непрерывного сигнала амплитудам отсчетных значений , взятых через постоянный интервал δt , при­писывается двоичный код , определяющий ее численную величину и знак. Очевидно , что число отсчетных значений c на данной t трассе с длительностью полезной записи t равно с = t/δt+1 , а общее число с' отсчетных значений на m-каналыюй сейсмограм­ме с' = сm. В частности , при t = 5 с , δt = 0,002 с и m == 24 , с = 2501, а с' = 60024 чисел , записанных в двоичном коде.

В практике цифровой обработки каждое числовое значение , являющееся эквивалентом данной амплитуды , принято именовать сейсмическим словом. Число двоичных разрядов сейсмического слова , называемое его длиной , определяется числом разрядов преобразователя аналог - код цифровой сейсмостанции (устрой­ства ввода при кодировании аналоговой магнитной записи). Фиксированное число двоичных разрядов , которым оперирует цифровая машина , выполняя арифметические действия , принято именовать машинным словом. Длина машинного слова опреде­ляется конструкцией ЭВМ и может совпадать с длиной сейсмиче­ского слова либо превышать его. В последнем случае при вводе в ЭВМ сейсмической информации в каждую ячейку памяти , емкостью в одно машинное слово , заносится несколько сейсмиче­ских слов. Такая операция именуется упаковкой. Порядок размещения информации (сейсмических слов) на магнит­ной ленте накопителя ЭВМ либо магнитной ленте цифровой стан­ции определяется их конструкцией и требованиями алгоритмов обработки.

Подпись:  nПодпись: nНепосредственно процессу записи цифровой информации на ленту магнитофона ЭВМ предшествует этап ее разметки на зоны. Под зоной понимается определенный участок ленты , рассчитанный на последующую запись k слов, где k = 2 , а степень n = О, 1, 2, 3. . ., причем 2 не должно превышать емкость оперативной памяти . При разметке на дорожках магнитной ленты записы­вается код , обозначающий номер зоны , а последовательность тактовых импульсов отделяет каждое слово.

В процессе записи полезно информации каждое сейсмическое слово (двоичный код отсчетного значения) регистрируется на отде­ляемый серией тактовых импульсов участок магнитной ленты в пределах данной зоны. В зависимости от конструкции магнито­фонов применяется запись параллельным кодом, параллельно-последовательным и последовательным кодом. При параллельном коде число , являющееся эквивалентом данной отсчетной ампли­туды , записывается в строке , поперек магнитной ленты. Для этого используется многодорожечный блок магнитных головок , число которых равно числу разрядов в слове. Запись параллельно-последовательным кодом предусматривает размещение всей инфор­мации о данном слове в пределах нескольких строк , располагае­мых последовательно одна за другой. Наконец , при последова­тельном коде информация о данном слове записывается одной магнитной головкой вдоль магнитной ленты.

Количество машинных слов K0 в пределах зоны магнитофона ЭВМ , предназначенной для размещения сейсмической информации , определяется временем t полезной записи на данной трассе, шагом квантования δt и количеством сейсмических слов r , пакуемых в одно машинное слово.

Таким образом, первый этап обработки на ЭВМ сейсмической информации, зарегистрированной цифровой станцией к мульти­плексной форме , предусматривает ее демультиплексирование , т. е. выборку отсчетных значений , соответствующую их последо­вательному размещению на данной трассе сейсмограммы вдоль оси t и их запись в зону НМЛ , номер которой программно при­писан данному каналу. Ввод аналоговой сейсмической информа­ции в ЭВМ в зависимости от конструкции специализированного вводного устройства может выполняться как поканально , так и в мультиплексном режиме. В последнем случае машина по задан­ной программе выполняет демультиплексирование и запись ин­формации в последовательности отсчетных значений на данной трассе в соответствующую зону НМЛ.

Устройство ввода аналоговой информации в ЭВМ.

Подпись:  i-1         i+1 Главным элементом устройства ввода аналоговой сейсмической записи в ЭВМ является аналого-цифровой преобразователь (АЦП) , вы­полняющий операции преобразования непрерывного сигнала в цифровой код. В настоящее время известно несколько систем АЦП . Для кодирования сейсмических сигналов в боль­шинстве случаев используются преобразователи поразрядного взвешивания с обратной связью . Принцип действия такого преобразователя основан на сравнении входного напряжения (отсчетной амплитуды) с ком­пенсирующим. Компенсирующее напряжение Uk изменяется пораз­рядно в соответствии с тем, превышает ли сумма напряжений вход­ную величину Ux. Одним из основных узлов АЦП являются циф­ро-аналоговый преобразователь (ЦАП) , управляемый но опреде­ленной программе нуль-органом , сравнивающим преобразуемое напряжение с выходным напряжением ЦАП. При первом тактовом импульсе на выходе ЦАП возникает напряжение UK, равное 1/2Uэ. Если оно превышает суммарное напряжение Ux, тогда в положении «нуль» окажется триггер старшего разряда . В противном случае (Ux > UKl) триггер старшего разряда окажется в положении единица. Пусть в первом такте выполнялось неравенство Ux < 1/2Uэ и в первом разряде выходного регистра записан нуль. Тогда во втором такте Ux сравнивается с эталонным напряжением 1/4Uэ , соответствующим единице следующего разряда. Если Ux > Uэ , то во втором разряде выходного регистра запишется единица , а в третьем такте сравнения Ux будет сопоста­вляться с эталонным напряжением 1/4Uэ + 1/8Uэ , соответствую­щим единице в следующем разряде. В каждом очередном i-том такте сравнения , если в предыдущем была записана единица , напряжение Uki-1 увеличивается на величину Uэ /2 до тех пор , пока Ux не окажется меньше Uki. В этом случае выходное напря­жение Ux сравнивается с Uki+1 = Uэ/2 ∙ Uэ/2 и т. д. В результате сравнения Ux с поразрядно изменяемым UKв положении «нуль» окажутся триггеры тех разрядов, включение которых вызвало перекомпенсацию , а в положении «единица» -триггеры разрядов , обеспечивших наилучшее приближение к изме­ряемому напряжению. При этом в выходном регистре запишется число , эквивалентное входному напряжению ,

Подпись: iПодпись: iПодпись:   0 ,&#13;&#10;  1.&#13;&#10;Ux = ∑aiUэ/2

где n — число разрядов выходного кода АЦП ; аi = {

С выходного регистра через блок сопряжения вводного устрой­ства по команде ЭВМ цифровой код пересылается в ЭВМ для дальнейшей программной обработки. Зная принцип работы ана­лого-цифрового преобразователя , нетрудно понять назначение и принцип работы основных блоков устройства ввода аналоговой информации в ЭВМ.

Основными элементами устройства ввода являются: 1) элек­тронно-механическая система барабанного типа для протяжки и считывания стандартной магнитной пленки , эквивалентная применяемым па аналоговых сейсмических станциях и обрабаты­вающих машинах ; 2) блок воспроизведения , включающий усилители воспроизведе­ния , частотные фильтры , АРУ ; 3) блок выработки импульсов квантования , включающий усилитель , формирователь марок вре­мени и схему , компенсирующую нелинейность протяжки магнит­ной пленки в процессе записи (воспроизведения) , и обеспечиваю­щий постоянный шаг δt между отсчетными значениями ; 4) блок преобразования (аналого-цифровой и цифро-аналоговый преобра­зователи) ; 5) блок сопряжения устройства ввода с ЭВМ.

Устройство вывода для построения сейсмических разрезов.

Результатом обработки сейсмической информации на ЭВМ является временной либо глубинный разрез , представленный в виде последовательности трасс х = const , эквивалентных трас­сам сейсмограммы. При длительности полезной записи в 5с и шаге квантования в 0,002с каждая трасса временного разреза содержит 2500 отсчетных значений. Число отсчетных значений на трассе глубинного разреза , сохраняющего динамику записи , опре­деляется максимальным временем t0max временного разреза, v(t0max) и шагом квантования ∆z по оси z. Так , например , при t0max = 5с , v(t0max =5 с) =4 км/с и ∆z = 2,5м число отсчетных значений на трассе глубинного разреза равно 4000. Совокуп­ность отсчетных амплитуд , программно приписанных времени k δt либо глубине l ∆z , потрасcно хранится в соответствующих зонах НМЛ ЭВМ (либо на дисках). При такой форме размещения резуль­татов обработки процесс вывода разреза на построитель практи­чески близок процессу вывода на фотоблок временного разреза, полученного на аналоговых машинах. Отличие заключается в необходимости преобразования последо­вательности отсчетных значений в непрерывный сигнал.

Построитель сейсмических разрезов представляет собой уни­версальный фотоблок , оснащенный обратным преобразователем (ЦАП) , аналоговым блоком и схемой логики , обеспечивающей нормальное функционирование устройства в процессе работы. Учитывая необходимость многократного воспроизведения сейсми­ческого разреза (использование различных способов записи , режи­мов АРУ , полосы пропускания фильтров и усиления) , некоторые построители оснащаются магнитным барабаном стандартного типа , и блоком записи - воспроизведения , позволяющими в процессе записи разреза на фотоноситель одновременно регистрировать его в аналоговой форме на магнитной пленке. В последующем ви­зуализация разреза выполняется минуя ЭВМ.

Устройство подготовки данных предназначено для воспроиз­ведения полевых магнитных записей для анализа данных, обеспе­чивающего выбор оптимальных параметров и контроль качества отметки момента взрыв

Устройство ввода и вывода предназначено для поканального ввода аналоговой сейсмической информации в ЭВМ и вывода результа­тов обработки , регистрируемых в аналоговой форме на стандарт­ной магнитной пленке. Электронная и механическая системы устройства рассчитаны на скорость считывания (записи), кодирования (декодирования) , в 24 раза превышающую скорость записи в поле (0,25с на трассу).

Фотопостроитель (ФП) представляет собой системы для поканального воспроизведения способом переменной плотности на фотоносителе аналоговых снгналов , зарегистрированных на стан­дартной магнитной пленке. Универсальный фотопостроитель (УФП) в отличие от ФП поз­воляет воспроизводить сейсмическую информацию различными способами (переменная плотность , площадь , амплитуда , символы) и варьировать масштаб записи по осям t и х.

Спецпроцессоры.

Помимо устройств ввода-вывода , универ­сальные ЭВМ дополняются спецпроцессорами , предназначенными для преобразования цифровой информации по одному или несколь­ким алгоритмам , не требующим перенастройки системы в про­цессе обработки массива данных (сейсмической трассы , сейсмо­граммы , набора сейсмограмм). К числу таких алгоритмов отно­сятся свертка , преобразование Фурье , упаковка и распаковка мас­сивов , регулируемое направленное суммирование по фиксирован­ным направлениям , вычисление функции авто- и взаимной кор­реляции и ряд других. Реализация указанных алгоритмов про­граммным путем на универсальных ЭВМ сопряжена с большими затратами машинного времени , во многом несоизмеримыми с затра­тами времени на другие алгоритмические операции.

В спецпроцессорах , решающих данные задачи , ускорение преобразования достигается за счет жесткой коммутации. Пере­коммутация устройства выполняется внешними переключателями либо перфокартами , задающими режим работы. Типичным спец­процессором является устройство быстрой свертки (конвольвер) , используемое для фильтрации , а также для вычисления функций авто- и взаимной корреляции. Фильтрация (прямая, обратная) , выполняемая во временной форме , базируется на свертке опера­тора фильтра , заданного импульсной реакцией , с сейсмической трассой. Для получения одной отсчетной амплитуды результиру­ющего сигнала на выходе фильтра с оператором из l точек необ­ходимо произвести l операций умножения двух чисел и операцию сложения l произведений. В комбинации ЭВМ - спецпроцессор указанная задача решается следующим образом. По заданной трассе либо другой априорной информации ЭВМ определяет опе­ратор фильтра. Реализация данного этапа фильтрации на универ­сальной ЭВМ связана с многообразием способов определения импульсной реакции фильтра. Отсчетные значения оператора и трассы по каналу связи пересылаются в конвольвер , выполняющий операцию свертки. Результат свертки, в виде последователь­ности отсчетных значений отфильтрованной трассы, вновь посту­пает в ЭВМ для дальнейшей обработки. Наряду с конвольверами для ускорения процесса фильтрации в частотной форме универсальные ЭВМ оснащаются спецпроцессорами для быстрого преобразования Фурье.

Детальное изучение алгоритмов метода ОГТ позволило выде­лить серию стандартных преобразований , постоянно применяемых в процессе обработки. В результате стал возможным синтез гиб­ридных спецпроцессоров , в которых закоммутирована не одна , а целая серия стандартных операций обработки данных МОГТ. Однако , в отличие от аналоговых машин с жестким набором операций , указанные устройства управляются универсальной ЭВМ , что в целом не уменьшает гибкости всей системы. Стремле­ние повысить роль геофизика в процессе обработки данных МОГТ на ЭВМ , особенно на этапах , формализация которых не достигла уровня , обеспечивающего требуемую точность в различных сейсмогеологических ситуациях , привело к созданию специализиро­ванных систем взаимодействия геофизик - ЭВМ. Данные системы помимо универсальной ЭВМ высокого класса , включают специали­зированную ЭВМ , управляющую одним или несколькими видепреобразователями со световым пером. В результате процесс обра­ботки исходной информации превращается в единый замкнутый цикл , когда часть процедур выполняется программным путем , а другая часть , в основном интерпретационного характера , - визуально , на основе анализа промежуточных данных , воспроиз­водимых на экране ЭЛТ.

 


Информация о работе «Расчет параметров системы наблюдений в методе ОГТ»
Раздел: Геология
Количество знаков с пробелами: 61822
Количество таблиц: 8
Количество изображений: 6

Похожие работы

Скачать
190208
37
10

... границей филиалы, отделения, представительства. Организационная структура ООО «Тольяттикаучук» утверждается руководителем организации (Приложение 3).2.2 Структура построения системы бюджетирования на ООО «Тольяттикаучук» Постановка бюджетного управления начинается с утверждения организационной структуры, потому что финансовая структура строится именно на ее базе. Поэтому организационная структура ...

Скачать
22929
0
2

... . Поэтому на последующих этапах обработки возникает необходимость проведения коррекции вводимых кинематических поправок. В данной курсовой работе рассмотрены этапы ввода и коррекции кинематических поправок в системе RadExPro. Теоретическая часть Ввод кинематических поправок Как уже говорились выше, отраженная от границ волна подходит к приемникам в моменты времени, зависящие от ...

Скачать
369637
0
0

... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...

Скачать
23673
1
17

... Interactive Velocity Analysis. ·  Offset - окно просмотра сейсмограммы (настройка параметров окна происходит на вкладке Gather display); ·  Окно суммотрасс, полученных с использованием текущей скоростной функции, отпикированной на спектре скоростей (настройка параметров окна происходит на вкладке FLP display); ·  CVS - окно сумм с постоянными скоростями (настройка параметров окна происходит ...

0 комментариев


Наверх