Министерство образования и науки Украины
Национальный Технический Университет
«Харьковский Политехнический Институт»
Кафедра Общей химической технологии, процессов и аппаратов
Курсовой проект
Тема проекта:
Расчет трехкорпусной выпарной установки непрерывного действия
Проектировал студент
Шорин В. В..
гр. Н-48
Руководитель проекта
Новикова Г. С.
Харьков 2010 г.
Введение
Технологическая схема выпарной установки
В химической промышленности для концентрирования растворов нелетучих и мало летучих веществ широко применяется процесс выпаривания. Наиболее целесообразно для этого использовать многокорпусные выпарные установки непрерывного действия (МВУ). МВУ состоят из нескольких корпусов, в которых вторичный пар предыдущего корпуса используется в качестве греющего пара для последующего корпуса. В этих установках первичным паром обогревается только первый корпус. В многокорпусных выпарных установках достигается значительная экономия греющего пара по сравнению с однокорпусными установками той же производительности.
Принципиальная технологическая схема трехкорпусной вакуум-выпарной установки непрерывного действия представлена на рис.1.1.
Исходный раствор подается из емкости 1 центробежным насосом 2 через теплообменник 3 в первый корпус выпарной установки 4. В теплообменнике 3 исходный раствор нагревается до температуры близкой к температуре кипения раствора в первом корпусе выпарной установки.
Первый корпус установки обогревается свежим (первичным) паром. Вторичный пар, образующийся при кипении раствора в первом корпусе, направляется в качестве греющего пара во второй корпус 5; сюда же поступает частично сконцентрированный раствор из первого корпуса. Аналогично упаренный раствор из второго корпуса подается в третий корпус 6 , обогреваемый вторичным паром второго корпуса. Упаренный до конечной концентрации в третьем корпусе готовый продукт поступает из него в емкость 10. По мере прохождения из корпуса в корпус давление и температура пара понижаются, и из последнего (третьего) корпуса пар с низким давлением отводится в барометрический конденсатор смешения 7, в котором при конденсации пара создается вакуум. Раствор и вторичный пар перемещаются из корпуса в корпус самотеком благодаря общему перепаду давления, возникающего в результате избыточного давления в первом корпусе и вакуума в последнем. Воздух и неконденсирующиеся газы, поступающие в установку с охлаждающей водой (в конденсаторе) и через не плотности трубопроводов, отсасываются через ловушку 8 вакуум-насосом.
Смесь охлаждающей воды и конденсата сливается самотеком через барометрическую трубу в бак-гидрозатвор 9.Конденсат греющих паров из выпарных аппаратов и теплообменника выводится с помощью конденсатоотводчиков.
Выбор выпарных аппаратов
Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объеме аппарата и расходе металла на его изготовление, простота устройства, надежность в эксплуатации, легкость чистки поверхности теплообмена, осмотра и ремонта.
Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами раствора.
Для выпаривания растворов небольшой вязкости (до 8 мПа∙с) без образования кристаллов, чаще всего используют выпарные аппараты с естественной циркуляцией. Высоковязкие и кристаллизующиеся растворы выпаривают в аппаратах с принудительной циркуляцией.
Растворы чувствительные к повышенным температурам рекомендуется выпаривать в роторно-пленочных выпарных аппаратах, а растворы склонные к пенообразованию – в прямоточных аппаратах с восходящей пленкой.
Типы и основные размеры выпарных аппаратов представлены в ГОСТ 11987–81, и каталогах УКРНИИХИММАШа [11,12].
Задание на расчет выпарной установки
Цель расчета выпарной установки – расчет материальных потоков, затрат тепла и энергии, размеров основного аппарата, расчет и выбор вспомогательного оборудования, входящего в технологическую схему установки.
Задание на курсовое проектирование
Рассчитать и спроектировать трехкорпусную выпарную установку непрерывного действия для концентрирования водного раствора по следующим данным:
1. Производительность установки по исходному раствору –8000 кг/ч;
2. Концентрация раствора: начальная – 5% масс.; конечная – 15 % масс.;
3. Давление греющего пара –Р=0,4 МПа;
4. Давление в барометрическом конденсаторе –,Р=0,0147 МПа;
5. Раствор подается в первый корпус подогретым до температуры кипения;
6. Схема выпаривания - прямоточная; циркуляция естественная
1. Определение поверхности теплопередачи выпарных аппаратов
Технологический расчёт выпарных аппаратов заключается в определении поверхности теплопередачи. Поверхность теплопередачи выпарного аппарата определяется по основному уравнению теплопередачи
, (1.1)
где – поверхность теплопередачи, м2;
– тепловая нагрузка, Вт;
– коэффициент теплопередачи, Вт/(м2∙К);
– полезная разность температур, К.
Для определения тепловых нагрузок, коэффициентов теплопередачи и полезных разностей температур необходимо знать распределение упариваемой воды, концентрации растворов по корпусам и их температуры кипения. Первоначально определим эти величины по материальному балансу, в дальнейшем уточним их по тепловому балансу.
... этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции. Ниже приводятся области преимущественного использования выпарных аппаратов различных типов. Для выпаривания растворов небольшой вязкости ~8 10-3 Па с, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них ...
... , его нормализуют после сгущения водой, обезжиренным молоком или сливками. Вода должна быть кипяченой и очищенной. 4. Расчет двухкорпусной вакуум-выпарной установки Расчет двухкорпусной вакуум-выпарной установки с термокомпрессором для изготовления сгущенного молока с разработкой выпарного аппарата. Исходные данные: Производительность по испаренной влаге: W=2000; Давление рабочего пара: ...
... расход теплоносителя, м3/сек; G – массовый расход теплоносителя, кг/ч; γ – плотность пара, кг/м3; w – скорость пара, м/сек. Скорость пара принять 20 м/сек. Расчеты сводим в табл. Таблица расчетов штуцеров выпарной установки Наименование штуцера Расход пара, кг/ч Давление пара, ат Плотность, кг/м3 Секундный расход, м3/с Скорость пара, м/с Диаметр, мм расчетный принятый ...
... жидкости в трубах, а также от интенсивности парообразования Поэтому в аппаратах с принудительной циркуляцией выпаривание эффективно протекает при малых полезных разностях температур,. не превышающих 3—5 °С и при значительных вязкостях растворов Одна из конструкций выпарного аппарата с принудительной циркуляцией показана на рис 16. Аппарат имеет выносную вертикальную нагревательную камеру ...
0 комментариев