2.3 Определение поверхности теплопередачи подогревателя

Поверхность теплопередачи подогревателя (теплообменника) Fп 2 определяем по основному уравнению теплопередачи:

, (2.7)


где  – тепловая нагрузка подогревателя, Вт определяется из теплового баланса теплообменника:  Кп – коэффициент теплопередачи, Вт/(м К), Кп = 120 ÷ 340;

 – средняя разность температур между паром и раствором, ºС;

 – количество начального раствора, кг/с, и его теплоёмкость, Дж/(кг∙К);

 – начальная температура исходного раствора, ºС;

 – температура раствора на выходе из теплообменника, ºС, равная температуре с которой раствор входит в первый корпус.

t = 143,6ºС пар t = 143,6ºС

t = 20ºС раствор t = 129,9ºС

 

Так как отношение , то величину  определим как среднелогарифмическую:

Тогда поверхность теплообменника

Площадь поверхности теплопередачи теплообменника принимается на 10—20 % больше расчетной величины:


На основании найденной поверхности по ГОСТ 15122 – 79 выбираем кожухоторубчатый одноходовой теплообменник с такими параметрами: площадь поверхности теплопередачи F = 65 м2 , число труб n = 283 длина труб l = 3 м, диаметр труб 25 х 2 мм, диаметр кожуха D = 600 мм .

2.4 Расчёт центробежного насоса

Основными типами насосов, используемых в химической технологии, являются центробежные, осевые и поршневые. Для проектируемой выпарной установки используем центробежный насос. При проектировании обычно возникает задача определения необходимого напора Н и мощности N при заданной подаче (расходе) жидкости Q, перемещаемой насосом. Далее по найденному напору и производительности насоса определяем его марку, а по величине мощности на валу – тип электродвигателя к насосу.

Мощность на валу насоса, кВт,

, (2.8)

где Q – производительность насоса, м3/c;

Н – напор, развиваемый насосом, м;

 – к.п.д. насоса,  = 0,4 ÷ 0,9;

 – к.п.д. передачи (для центробежного насоса  = 1).

Напор насоса

, (2.9)


где Р1 – давление жидкости для исходного раствора (атмосферное), Па; Р2 – давление вторичного пара в первом корпусе, Па;

НГ – геометрическая высота подъема раствора, м,

Н Г = 8 ÷ 15 м; hп – напор, теряемый на преодоление гидравлических сопротивлений (трения и местных сопротивлений) в трубопроводе и теплообменнике, м.

Потери напора

 

, (2.10)

где  и  – потери напора соответственно в трубопроводе и в теплообменнике, м. В связи с громоздкостью расчета потери напора в теплообменнике можно не рассчитывать и принимать их в пределах , в зависимости от скорости движения раствора в трубах теплообменника, длины, количества труб и числа ходов теплообменника;

w – скорость раствора, м/с, w = 0,5 ÷ I,5 м/с;

l и d – длина и диаметр трубопровода, м; l = 10 ÷ 20 м;

 – коэффициент трения;

 – сумма коэффициентов местных сопротивлений.

Определим диаметр трубопровода из основного уравнения расхода:

Для определения коэффициента трения  рассчитываем величину Rе:


, (2.11)

где  плотность, кг/м3 и вязкость, Па∙с исходного раствора; при концентрации x = 5%;

Для гладких труб при Re = 49168 по задачнику

Определим сумму коэффициентов местных сопротивлений :

Коэффициент местных сопротивлений равны:

вход в трубопровод  = 0,5;

выход из трубопровода  = 1,0;

колено с углом 90º (дл--+я трубы d = 54 мм);  = 1.1;

вентиль прямоточный  =  (для трубы d = 24,6 мм);

;

Примем потери напора в теплообменнике  и  аппарата плюс 2 метра,НГ = 6,5 + 2 = 8,5 м.


Тогда, по формулам (2.8) и (2.9)

;

.

По приложению табл. П11 устанавливаем, что данным подаче и напору больше всего соответствует центробежный насос марки X8/30, для которого в оптимальных условиях работы Q = 2,4 10-3 м3/с, H = 30 м. Насос обеспечен электродвигателем АО2 – 32 – 2 номинальной мощностью N = 4 кВт.

По мощности, потребляемой двигателем насоса, определяем удельный расход энергии:


Информация о работе «Расчет трехкорпусной выпарной установки непрерывного действия»
Раздел: Промышленность, производство
Количество знаков с пробелами: 29185
Количество таблиц: 6
Количество изображений: 1

Похожие работы

Скачать
31244
12
3

... этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции. Ниже приводятся области преимущественного использования выпарных аппаратов различных типов. Для выпаривания растворов небольшой вязкости ~8 10-3 Па с, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них ...

Скачать
32004
1
1

... , его нормализуют после сгущения водой, обезжиренным молоком или сливками. Вода должна быть кипяченой и очищенной. 4. Расчет двухкорпусной вакуум-выпарной установки Расчет двухкорпусной вакуум-выпарной установки с термокомпрессором для изготовления сгущенного молока с разработкой выпарного аппарата. Исходные данные: Производительность по испаренной влаге: W=2000; Давление рабочего пара: ...

Скачать
21040
3
1

... расход теплоносителя, м3/сек; G – массовый расход теплоносителя, кг/ч; γ – плотность пара, кг/м3; w – скорость пара, м/сек. Скорость пара принять 20 м/сек. Расчеты сводим в табл. Таблица расчетов штуцеров выпарной установки Наименование штуцера Расход пара, кг/ч Давление пара, ат Плотность, кг/м3 Секундный расход, м3/с Скорость пара, м/с Диаметр, мм расчетный принятый ...

Скачать
49744
1
18

... жидкости в трубах, а также от интенсивности парообразования Поэтому в аппаратах с принудительной циркуляцией выпаривание эффективно протекает при малых полезных разностях температур,. не превышающих 3—5 °С и при значительных вязкостях растворов Одна из конструкций выпарного аппарата с принудительной циркуляцией показана на рис 16. Аппарат имеет выносную вертикальную нагревательную камеру ...

0 комментариев


Наверх