ІДЕАЛЬНА ОПТИЧНА СИСТЕМА
1. Поняття про ідеальну оптичну систему. Кардинальні елементи
Під ідеальною оптичною системою розуміють таку систему, що будь-яку точку простору предметів зображує стигматично, тобто вона не порушує гомоцентричності широких пучків променів, що проходять крізь неї, у межах великої області простору. Теорія ідеальної оптичної системи має чисто геометричний характер. Вона є окремим випадком більш загальної геометричної задачі про перетворення одного простору в інший, котрий називають колінеарним перетворенням. Кожній безлічі точок одного простору відповідає безліч точок в іншому просторі, яке можна назвати зображенням першого. В основі колінеарної відповідності лежать такі розуміння:
- кожній точці простору предметів відповідає тільки одна точка в просторі зображень; ці дві точки є сполученими;
- будь-якій прямій лінії простору предметів відповідає тільки одна сполучена з нею пряма лінія у просторі зображень.
Таким чином, будь-якій площині простору предметів відповідає тільки одна сполучена площина в просторі зображень. У сполучених площинах, що перпендикулярні оптичній осі, зберігається строга подоба.
Виберемо в предметній площині Q, перпендикулярної до осі, предмет у вигляді лінійного відрізка у (рис. 1). Зображенням цього предмета буде відповідний відрізок у'. Відношення розміру зображення до розміру предмета називають лінійним збільшенням ідеальної системи:
b = у¢/у.(1)
Для даної пари сполучених площин Q, Q', перпендикулярних до оптичної осі, лінійне збільшення є постійним і не залежить від розміру предмета. Для іншої пари сполучених площин лінійне збільшення матиме інше значення. Якщо b < 0, то зображення стосовно предмета буде переверненим, при b > 0 - зображення пряме. Лінійне збільшення визначає масштаб зображення. Теорія ідеальної центрованої оптичної системи була розроблена Гаусом, тому її часто називають оптикою Гауса.
Рисунок 1- До знаходження лінійного збільшення оптичної системи
Рисунок 2- Кардинальні точки оптичної системи
Перейдемо до визначення понять кардинальних (основних) елементів ідеальної оптичної системи. Для цього представимо оптичну систему, що складається з ряду поверхонь, у якій l і k (рис. 2) є першою й останньою поверхнями, і розглянемо три характерних положення предметної точки і її зображення.
1. Світна точка А знаходиться на оптичній осі в нескінченності. Її зображення буде в точці F', що називають заднім фокусом оптичної системи. Площина, що проходить крізь задній фокус і перпендикулярна оптичній осі, називається задньою фокальною площиною оптичної системи. Ця площина є зображенням нескінченно вилученої площини. Пучок променів, що виходить з нескінченно вилученої точки на оптичній осі, приходить в оптичну систему у вигляді пучка, рівнобіжного оптичній осі. Отже, задній фокус володіє тою властивістю, що крізь нього проходить усякий промінь, що входить в оптичну систему паралельно оптичній осі. Якщо предметна точка В (рис. 3, а), вилучена в нескінченність, знаходиться поза оптичною віссю, то промені, що виходять з цієї точки, утворять похилий пучок рівнобіжних променів. Цей пучок по виходу з оптичної системи збирається в сполученій точці В', що знаходиться поза оптичною віссю, у задній фокальній площині QF.
2. При переміщенні предметної точки А праворуч точка А' (див. рис. 2) переміщатиметься також праворуч і видалиться в нескінченність. У цьому випадку точка А переміститься в точку F. Точку F на оптичній осі в просторі предметів, сполучений з нескінченно вилученою точкою оптичної осі в просторі зображень, називають переднім фокусом оптичної системи. Площина QF, що перпендикулярна оптичній oci і минаює через передній фокус, називають передньою фокальною площиною. Передня фокальна площина сполучена з нескінченно вилученою площиною простору зображень. Отже, пучок променів, що виходить з будь-якої точки В передньої фокальної площини Qp (крім переднього фокуса), виходить із системи похилим пучком рівнобіжних променів (рис. 4, б). Усякий промінь, що входить в оптичну систему через передній фокус, виходить із системи паралельно її оптичної осі.
Рисунок 2- Схема для знаходження властивостей фокальних площин
3. Виберемо пари сполучених і перпендикулярних оптичній осі площини, у яких лінійне збільшення дорівнює плюс одиниці (див. рис. 2). Ці площини називають передньою і задньою головними площинами. Точки їхнього перетинання з оптичною віссю називають передньою Н і задньою Н' головними точками. Тому, що лінійне збільшення в головних площинах дорівнює +1, то будь-який відрізок в одній площині зображується рівним і однаково розташованим відрізком в іншій площині. Звідси випливає, що вхідний і вихідний промені перетинають відповідні головні площини на рівних висотах h.
Відстань HF від передньої головної точки Н до переднього фокуса F є передньою фокусною відстанню оптичної системи, а відстань H'F' від задньої головної точки Н' до заднього фокуса F' - задньою фокусною відстанню. Фокусні відстані позначають відповідно f і f¢. Їх відраховують від головних точок.
Якщо оптична система знаходиться в однорідному середовищі, наприклад у повітрі (n = n' = 1), то f' = -f, тобто заднє і переднє фокусні відстані рівні за абсолютним значенням. У загальному випадку при n' ¹ n
-f/f = n/n'.(2)
Оскільки n > 0 і n' > 0, тo фокусні відстані оптичної системи завжди мають різні знаки. Як правило, для характеристики оптичної системи використовують задню фокусну відстань, тому, якщо f' > 0, то система вважається позитивною, якщо f < 0, то - негативною. У негативних системах задній фокус знаходиться перед оптичною системою.
Рисунок 3- Схема для знаходження фокусних відстаней: а)- заднього, б)- переднього
Фокуси, фокальні площини, головні площини, головні точки і фокусні відстані називають кардинальними елементами оптичної системи.
Положення фокусів і головних площин визначають шляхом розрахунку чи графічної побудови ходу променів, паралельних оптичній осі, у прямому і зворотному напрямках (рис. 4). Як випливає з рис. 4, при висоті h падіння променів у прямому і зворотному ході одержуємо такі формули для визначення фокусних відстаней:
f' = h/tgsk¢;
f = h/tgs2.
... інші величини, що характеризують властивості оптичної системи. Потім шляхом інтерполяції чи екстраполяції знаходять варіант оптичної системи, що задовольняє технічному завданню. Комбінований метод На початку розрахунку за цим методом припускають, що в оптичній системі присутні лише аберації третього порядку, і розрахунок виконують на підставі теорії аберацій третього порядку. Після знаходження ...
... льшу потужність, що приймається, ніж необхідно для ідеального квантового детектора. 3. Розрахунок шумів попередніх каскадів підсилювачів Активними елементами вхідних каскадів оптичних приймальних пристроїв є як польові, так і біполярні транзистори. Частіше використовуються польові транзистори, вони мають великий вхідний опір, тому узгоджуються з великим опором фотодетектора без застосування ...
... і ВтАХ. Цей метод дозволяє усувати лише парні гармоніки. Таким чином, наведені методи компенсації нелінійних викривлень розширюють можливості аналогових ВОСП. 2. Цифрові оптичні передавальні пристрої У волоконно-оптичних системах передачі оптичне випромінювання модулюється дворівневими сигналами ("0" та "1") кодів, які застосовуються у світловодних трактах. У цифрових оптичних передавальних ...
... РВФ. Будь-яка перешкода, що порушує масоперенос, дає помилку в показаннях ВОС. На рис.3.3 показана схема роботи необоротного оптрода на кисень. Рис.3.3. Схема роботи необоротного волоконно-оптичного сенсора на кисень. Обумовлений компонент дифундує через селективну мембрану з відповідним розміром пор у порожнину, що містить іммобілізований флуоресціюючий барвник. Його світіння гаситься в ...
0 комментариев