2. Решение задачи 1

Определим линейное уравнение парной регрессии.

Для этого составим и решим следующую систему уравнений:

;

.

;

.

Решая данную систему уравнений получаем:

а=81,232;

b=0,76.

Итого получаем:

Рассчитаем линейные коэффициенты парной корреляции и среднюю ошибку аппроксимации

Расчет будем вести табличным способом, и представим в таблице 2.


Таблица 2 - Расчет линейных коэффициентов парной корреляции и средняя ошибка аппроксимации

N X Y X∙Y X2 Y2

Y-

1 23 110 2530 529 12100 98,71 11,29 127,42 10,26
2 45 125 5625 2025 15625 115,43 9,57 91,55 7,65
3 34 111 3774 1156 12321 107,07 3,93 15,43 3,54
4 51 121 6171 2601 14641 119,99 1,01 1,02 0,83
5 28 109 3052 784 11881 102,51 6,49 42,09 5,95
6 62 127 7874 3844 16129 128,35 -1,35 1,83 1,06
7 71 143 10153 5041 20449 135,19 7,81 60,96 5,46
8 63 121 7623 3969 14641 129,11 -8,11 65,80 6,70
9 70 154 10780 4900 23716 134,43 19,57 382,91 12,71
10 45 108 4860 2025 11664 115,43 -7,43 55,23 6,88
11 51 136 6936 2601 18496 119,99 16,01 256,26 11,77
13 27 109 2943 729 11881 101,75 7,25 52,53 6,65
13 62 125 7750 3844 15625 128,35 -3,35 11,24 2,68
14 57 110 6270 3249 12100 124,55 -14,55 211,76 13,23
15 63 120 7560 3969 14400 129,11 -9,11 83,03 7,59
16 69 134 9246 4761 17956 133,67 0,33 0,11 0,24
17 74 131 9694 5476 17161 137,47 -6,47 41,89 4,94
18 35 105 3675 1225 11025 107,83 -2,83 8,02 2,70
19 21 74 1554 441 5476 97,19 -23,19 537,87 31,34
20 60 120 7200 3600 14400 126,83 -6,83 46,68 5,69
1011 2393 125270 56769 291687 2393 0 2093,62 147,90
Ср. 50,55 119,65 6263,5 2838,45 14584,35 119,65 0 104,68 7,39

На рисунке 1 представим поле корреляции.

Рисунок 1 - Поле корреляции


Оценим статистическую зависимость параметров регрессии и корреляции (с помощью F-критерия Фишера и Т-статистики Стьюдента).

Определение коэффициента корреляции

Для определения коэффициента корреляции, определим дисперсию:

;

.

Определим коэффициент корреляции:

.

Данный коэффициент корреляции характеризует высокую тесноту связи

Определим коэффициент детерминации:

Это значит, что 61% вариации "у" объясняется вариацией фактор "х".

Определение статистической значимости уравнения регрессии с помощью F-критерия Фишера

Определим F- критерий Фишера:

.

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы 1 и (20-2)=18 составляет Fтаб = 4,45.

Имеем F> Fтаб, следовательно уравнение регрессии признается статистическим значимым.

Оценка статистической значимости параметров регрессии с помощью t-статистики Стьюдента

Табличное значение t-критерия для числа степеней свободы df=n-2=20-2=18 и уровня значимости α=0,05 составит tтабл=1,743.

Определим стандартные ошибки:

;

;

.

Тогда

;

;

.

Фактические значения t-статистики превосходят табличное значение:

, поэтому параметры а, b, и rxy не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительные интервалы для параметров регрессии а и b. Для этого определим предельную ошибку для каждого показателя:


;

.

Получаем доверительные интервалы:

 и ;

 и .

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью р=1-α=1-0,05=0,95 параметры а и b, находятся в указанных границах, не принимают нулевых значений, т.е. являются статистически значимыми и существенно отличны от нуля.

  3. Решение задачи 2

В качестве уравнения нелинейной функции примем показательную, т.е.

у = a∙bx.

Определим экспоненциальное уравнение парной регрессии

Для определения параметров а и b прологарифмируем данное уравнение:

ln(у) =ln(а)+ x∙ln(b),

Произведем следующую замену: А= ln(а), B= ln(b).

Составим и решим систему уравнений:


;

.

;

.

Решая данную систему уравнений получаем:

А=4,436 следовательно a=84,452;

B= 0,0067 следовательно b=1,0067.

Итого получаем

.

Рассчитаем линейные коэффициенты парной корреляции и среднюю ошибку аппроксимации

Расчет будем вести табличным способом, и представим в таблице 3.

Таблица 3 - Расчет линейных коэффициентов парной корреляции и средняя ошибка аппроксимации

N X Y X∙Y X2 Y2

Y-

1 23 110 2530 529,00 12100 98,47 11,53 132,90 201,64 10,48
2 45 125 5625 2025,00 15625 114,05 10,95 119,80 0,64 8,76
3 34 111 3774 1156,00 12321 105,98 5,02 25,23 174,24 4,53
4 51 121 6171 2601,00 14641 118,72 2,28 5,21 10,24 1,89
5 28 109 3052 784,00 11881 101,82 7,18 51,62 231,04 6,59
6 62 127 7874 3844,00 16129 127,77 -0,77 0,59 7,84 0,60
7 71 143 10153 5041,00 20449 135,68 7,32 53,59 353,44 5,12
8 63 121 7623 3969,00 14641 128,62 -7,62 58,09 10,24 6,30
9 70 154 10780 4900,00 23716 134,78 19,22 369,54 888,04 12,48
10 45 108 4860 2025,00 11664 114,05 -6,05 36,66 262,44 5,61
11 51 136 6936 2601,00 18496 118,72 17,28 298,70 139,24 12,71
12 27 109 2943 729,00 11881 101,14 7,86 61,82 231,04 7,21
13 62 125 7750 3844,00 15625 127,77 -2,77 7,65 0,64 2,21
14 57 110 6270 3249,00 12100 123,57 -13,57 184,15 201,64 12,34
15 63 120 7560 3969,00 14400 128,62 -8,62 74,33 17,64 7,18
16 69 134 9246 4761,00 17956 133,88 0,12 0,01 96,04 0,09
17 74 131 9694 5476,00 17161 138,43 -7,43 55,13 46,24 5,67
18 35 105 3675 1225,00 11025 106,69 -1,69 2,85 368,64 1,61
19 21 74 1554 441,00 5476 97,17 -23,17 536,63 2520,04 31,30
20 60 120 7200 3600,00 14400 126,07 -6,07 36,85 17,64 5,06
1011 2393 125270 56769,00 291687 2381,97 11,03 2111,36 5778,60 147,73
Ср. 50,55 119,65 6263,50 2838,45 14584,35 119,10 0,55 105,57 288,93 7,39

На рисунке 3 представим поле корреляции.

Рисунок 2 - Поле корреляции

Определяется коэффициент эластичности и индекс корреляции

Определим коэффициент эластичности

,

где


,

следовательно при изменении фактора"х" на 1% от своего среднего значения, "у" изменится на 0,334 % от своей средней величины.

Определение индекс корреляции

.

Данный коэффициент корреляции характеризует высокую тесноту связи

Определим индекс детерминации:

Это значит, что 63,5% вариации "у" объясняется вариацией фактор "х".

Определение статистической значимости уравнения регрессии с помощью F-критерия Фишера

Определим F- критерий Фишера:

.

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы 1 и (20-2)=18 составляет Fтаб = 4,45.

Имеем F> Fтаб, следовательно уравнение регрессии признается статистическим значимым.


Вывод

В результате проведенного корреляционного анализа исходных данных была выявлена функциональная зависимость между значениями "х" и "у", то есть: . Данная зависимость обладает максимальным значением индекса корреляции и детерминации, а так же F-критерия Фишера.


Список использованных источников

1. Учебно-методическое пособие к изучению курса "Статистика". Н.Н. Щуренко, Г.В. Девликамиова: Уфа, 2004.- 55с.

2. Эконометрика для начинающих. Основные понятия, элементарные методы, границы применимости, интерпретация результатов В.П. Носко: Москва, 2000. - 249с.

3. Эконометрика. И.И. Елисеева: Москва "Финансы и статистика", 2003.- 338с.

4. Общая теория статистики. Н.М. Виноградова, В.Т. Евдокимов, Е.М. Хитарова, Н.И. Яковлева: Москва,1968.- 381с.


Информация о работе «Корреляционный и регрессионный анализ»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 7968
Количество таблиц: 3
Количество изображений: 2

Похожие работы

Скачать
3030
2
0

дений над двумерной случайной величиной (X,Y) которые сведены в корреляционную таблицу 1. Выполнить следующие задачи: 1.         Найти несмещенные оценки математического ожидания X и Y. 2.         Найти несмещенные оценки для дисперсии X и Y. 3.         Вычислить выборочный коэффициент корреляции и проанализировать степень тесноты связи между X и Y. 4.         Составить уравнение прямых ...

Скачать
83374
2
16

... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...

Скачать
40977
3
0

... на зависимую и определение расчётных значений зависимой переменной (функции регрессии). Решение всех названных задач приводит к необходимости комплексного использования этих методов. Корреляционный и регрессионный анализ. Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется, как правило, с помощью экономико-статистических моделей. В широком смысле ...

Скачать
20402
2
2

... быстро выполняемой счетной операцией. Данная работа посвящена изучению возможности обработки статистических данных биржевых ставок методами корреляционного и регрессионного анализа с использованием пакета прикладных программ Microsoft Excel. Роль корреляцонно-регрессионного анализа в обработке экономических данных Корреляционный анализ и регрессионный анализ являются смежными разделами ...

0 комментариев


Наверх