1.  Расчет собственной концентрации электронов и дырок

 

Е  Е+dЕ

Зона проводимости

Е

Е

- m


Е


-m¢

Е

Валентная зона.

Рис.1.Положение уровня Ферми в невырожденном полупроводнике.

На рис. 1 показана зонная структура невырожденного полупроводника. За нулевой уровень отсчета энергии принимают обычно дно зоны проводимости Е. Так как для невырожденного газа уровень Ферми m должен располагаться ниже этого уровня, т.е. в запрещенной зоне, то m является величиной отрицательной (-m >>kT). При температуре Т, отличной от абсолютного нуля, в зоне проводимости находятся электроны, в валентной зоне – дырки. Обозначим их концентрацию соответственно через n и p. Выделим около дна зоны проводимости узкий интервал энергий dЕ, заключенный между Е и Е+dЕ. Так как электронный газ в полупроводнике является невырожденным, то число электронов dn, заполняющих интервал энергии dЕ (в расчете на единицу объема полупроводника), можно определить, воспользовавшись формулой :

N(E)dE=(2m)eEdE

dn=(2m)eeEdE

где m – эффективная масса электронов, располагающихся у дна зоны проводимости.

Обозначим расстояние от дна зоны проводимости до уровня Ферми через -m, а от уровня Ферми до потолка валентной зоны через -m¢. Из рис. 1 видно, что

m+m¢=-E,

m¢=-(Е+m)

где Е(Е) - ширина запрещенной зоны.

E=Е +bТ

Полное число электронов n, находящихся при температуре Т в зоне проводимости, получим, интегрируя (1.2) по всем энергиям зоны проводимости, т.е. в пределах от 0 до Е:

n=4

Так как с ростом Е функция exp(-E/kT) спадает очень быстро, то верхний предел можно заменить на бесконечность:

n=4

Вычисление этого интеграла приводит к следующему результату:

n=2exp (1.5)

Введем обозначение

N=2(2mkT/h) (1.6)

Тогда (1.5) примет следующий вид:

n=Nexp(/kT) (1.7)

Множитель Nв (1.7) называют эффективным числом состояний в зоне проводимости, приведенным ко дну зоны. Смысл этого числа состоит в следующем. Если с дном зоны проводимости, для которой Е=0, совместить Nсостояний, то, умножив это число на вероятность заполнения дна зоны, равную f(0)=exp(/kT), получим концентрацию электронов в этой зоне.

Подобный расчет, проведенный для дырок, возникающих в валентной зоне, приводит к выражению:

p=2exp=Nexp= Nexp (1.8)

где

N=2 (1.9)

– эффективное число состояний в валентной зоне, приведенное к потолку зоны.

Из формул (1.7) и (1.8) следует, что концентрация свободных носителей заряда в данной зоне определяется расстоянием этой зоны от уровня Ферми: чем больше это расстояние, тем ниже концентрация носителей, так как m и m¢ отрицательны.

В собственных полупроводниках концентрация электронов в зоне проводимости n равна концентрации дырок в валентной зоне p, так как

каждый электрон, переходящий в зону проводимости, «оставляет» в валентной зоне после своего ухода дырку. Приравнивая правые части соотношения (1.5) и (1.8), находим

2exp =2 exp

Решая это уравнение относительно m, получаем

m = -+kT ln (1.10)

Подставив mиз (1.10) в (1.5) и (1.7), получим

n=p=2exp=(NN)exp (1.11)


Из формулы (6.12) видно, что равновесная концентрация носителей заряда в собственном полупроводнике определяется шириной запрещенной зоны и температурой. Причем зависимость nи pот этих параметров является очень резкой.

Рассчитаем собственную концентрацию электронов и дырок при Т=300К.

Eg=(0,782-3,910300)1,6 10-19 =1,06410-19 Дж

N=2(2mkT/h)=2=2= =2=4,710 (см)

N=2=2=2=10,210 (см)

n=p=(NN)exp==

6,9210210=13,810 (см)


Информация о работе «Емкость резкого p-n перехода»
Раздел: Физика
Количество знаков с пробелами: 15287
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
8735
3
11

... облети присоединяют положительный полюс источника, p-n переход пропускают только малый ток неосновных носителей. Лишь при очень большом напряжении сила тока резко возрастает, что обусловлено электрическим пробоем перехода(обратное направление, левая ветвь ВАХ). При включении в цепь переменного тока p-n переходы действуют как выпрямители. Устройство в цепь пременного тока p-n переход, называется ...

Скачать
34754
3
3

... несколько сложнее, но, в любом случае наличие сборок предопределяет скачки. Практически в процессе естественной эволюции извержения на каждом ее этапе преобладает изменение лишь одного или двух параметров, и поведение системы может быть описано простой сборкой. Физический механизм катастрофического скачка заключается в следующем. Рост расхода приводит к росту скорости потока на всем протяжении ...

Скачать
128780
35
0

... его сопротивления и, таким образом, ток, протекающий через канал, порождает условия, при которых происходит ограничение его возрастания. Механизм насыщения скорости дрейфа позволяет получить совпадение теории и эксперимента; дело в том, что почти все падение напряжения сосредоточено в самой узкой части канала (верхней его части - горловине). В результате в этой области напряженность поля ...

Скачать
22271
0
2

... токи: , Наличие этих градиентов в p-n-переходе обуславливает существенное отличие его электрофизических свойств от свойств, прилегающих к нему p- и n-областей. Энергетическая диаграмма электронно-дырочного перехода. Энергетические диаграммы уединенных p- и n-областей полупроводника показаны на рисунке. В p-области уровень Ферми WFpсмещен в сторону валентной зоны, а в n-области уровень Ферми ...

0 комментариев


Наверх