2. Расчет контактной разности потенциалов

Для n-области основными носителями являются электроны, для p-области – дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей. При не слишком низких температурах эти примеси ионизированы практически полностью, вследствие чего концентрацию электронов в n-области nможно считать равной концентрации донорных атомов: n»N, а концентрацию дырок в p-области p– концентрация акцепторных атомов в p-области: p»N.

Помимо основных носителей эти области содержат не основные носители: n-область – дырки (p), p-область – электроны (n). Их концентрацию можно определить, пользуясь законом действующих масс:

n p= p n=n.

Как видим, концентрация дырок в p-области на 6 порядков выше концентрации их в n-области, точно так же концентрация электронов в n-области на 6 порядков выше их концентрации в p-области. Такое различие в концентрации однотипных носителей в контактирующих областях полупроводника приводит к возникновению диффузионных потоков электронов из n-области в p-область и дырок из p-области в n-область. При этом электроны, перешедшие из n- в p-область, рекомбинируют вблизи границы раздела этих областей с дырками p-области, точно так же дырки, перешедшие из p- в n-область, рекомбинируют здесьс электронами этой области. В результате этого в приконтактном слое n-области практически не остается свободных электронов и в нем формируется неподвижный объемный положительный заряд ионизированных доноров. В приконтактном слое p-области практически не остается дырок и в нем формируется неподвижный объемный отрицательный заряд ионизированных акцепторов.

Неподвижные объемные заряды создают в p–n-переходе контактное электрическое поле с разностью потенциалов V, локализованное в области перехода и практически не выходящее за его пределы. Поэтому вне этого слоя, где поля нет, свободные носители заряда движутся по-прежнему хаотично и число носителей, ежесекундно наталкивающихся на слой объемного заряда, зависит только от их концентрации и скорости теплового движения. Как следует из кинетической теории газов, для частиц, подчиняющихся классической статистике Максвела–Больцмана, это число nопределяется следующим соотношением:

n=nS, (2.1)

где n- концентрация частиц; - средняя скорость теплового движения; S – площадь, на которую они падают.

Неосновные носители – электроны из p-области и дырки из n-области, попадая в слой объемного заряда, подхватываются контактным полем V и переносятся через p–n-переход.

Обозначим поток электронов, переходящих из p- в n-область, через n, поток дырок, переходящих из n- в p-область, через p.

Согласно (2.1) имеем

n=nS, (2.2)

p=pS.  (2.3)

Иные условия складываются для основных носителей. При переходе из одной области в другую они должны преодолевать потенциальный барьер высотой qV, сформировавшийся в p–n-переходе. Для этого они должны обладать кинетической энергией движения вдоль оси c, не меньшей qV. Согласно (2.1) к p–n-переходу подходят следующие потоки основных носителей:

n=nS,

p=pS.

В соответствии с законом Больцмана преодолеть потенциальный барьер qVсможет только nexp (-qV/kT) электронов и p exp (-qV/kT) дырок. Поэтому потоки основных носителей, проходящие через p–n-переход, равны

n=n exp (-qV/kT), (2.4)

p=p exp (-qV/kT), (2.5)

На первых порах после мысленного приведения n- и p-областей в контакт потоки основных носителей значительно превосходят потоки неосновных носителей: n>>n, p>>p. Но по мере роста объемного заряда увеличивается потенциальный барьер p–n-перехода qV и потоки основных носителей согласно (2.4) и (2.5) резко уменьшаются. В то же время потоки неосновных носителей, не зависящие от qV[ см. (2.2) и (2.3)] остаются неизменными. Поэтому относительно быстро потенциальный барьер достигает такой высоты j= qV, при которой потоки основных носителей сравниваются с потоками неосновных носителей:

n=n, (2.6)

p=p. (2.7)

Это соответствует установлению в p–n-переходе состояния динамического равновесия.

Подставляя в (2.6) nиз (2.4) и n из (2.2), а в (2.7) p из (2.5) и p из (2.3), получаем

nexp (-qV/kT)= n, (2.8)

pexp (-qV/kT)= p. (2.9)

Отсюда легко определить равновесный потенциальный барьер p–n-перехода j= qV. Из (2.8) находим

j= qV= kTln (n/ n)= kTln (n p/n). (2.10)

Из (2.9) получаем

j= kTln (p/ p)=kTln (pn/ n). (2.11)

Из (2.10) и (2.11) следует, что выравнивание встречных потоков электронов и дырок происходит при одной и той же высоте потенциального барьера j. Этот барьер тем выше, чем больше различие в концентрации носителей одного знака в n- и p-областях полупроводника.

Рассчитаем контактную разность потенциалов при 300 К.

n=N=1,010

p=N=1,010

j= kTln(pn/n)=1,3810300ln=

 = 414106,26=2,610(Дж)

V== =0,16 (В)

 


Информация о работе «Емкость резкого p-n перехода»
Раздел: Физика
Количество знаков с пробелами: 15287
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
8735
3
11

... облети присоединяют положительный полюс источника, p-n переход пропускают только малый ток неосновных носителей. Лишь при очень большом напряжении сила тока резко возрастает, что обусловлено электрическим пробоем перехода(обратное направление, левая ветвь ВАХ). При включении в цепь переменного тока p-n переходы действуют как выпрямители. Устройство в цепь пременного тока p-n переход, называется ...

Скачать
34754
3
3

... несколько сложнее, но, в любом случае наличие сборок предопределяет скачки. Практически в процессе естественной эволюции извержения на каждом ее этапе преобладает изменение лишь одного или двух параметров, и поведение системы может быть описано простой сборкой. Физический механизм катастрофического скачка заключается в следующем. Рост расхода приводит к росту скорости потока на всем протяжении ...

Скачать
128780
35
0

... его сопротивления и, таким образом, ток, протекающий через канал, порождает условия, при которых происходит ограничение его возрастания. Механизм насыщения скорости дрейфа позволяет получить совпадение теории и эксперимента; дело в том, что почти все падение напряжения сосредоточено в самой узкой части канала (верхней его части - горловине). В результате в этой области напряженность поля ...

Скачать
22271
0
2

... токи: , Наличие этих градиентов в p-n-переходе обуславливает существенное отличие его электрофизических свойств от свойств, прилегающих к нему p- и n-областей. Энергетическая диаграмма электронно-дырочного перехода. Энергетические диаграммы уединенных p- и n-областей полупроводника показаны на рисунке. В p-области уровень Ферми WFpсмещен в сторону валентной зоны, а в n-области уровень Ферми ...

0 комментариев


Наверх