1. Общие сведения о волнах
1.1 Волновой процесс
Термины «волна», «волновой процесс», употребляемые в физике и технике, получили широкое распространение. Под распространением волны понимается постепенное вовлечение среды в некоторый физический процесс, приводящее к передаче энергии в пространстве.
Пусть в какой-то области пространства наблюдается физический процесс, который в точке можно охарактеризовать функцией . В другой точке измерения величины в это же время, быть может, покажут отсутствие процесса. Но через какое-то время он будет передан средой, и мы отметим, что
В простейшем случае будет обнаружено лишь запаздывание процесса во времени, т. е. , где — время, требуемое для прохождения пути со скоростью . Пусть в пространстве существует зависимость только от одной координаты . Характеризующая процесс функция
(1.1)
построена при и при . Очевидно,.
Говорят, что функция (1.1) описывает волну. Иногда волны этого рода называют «недеформируемыми»; имеется в виду, что временной закон во всех точках пространства — с точностью до сдвига — одинаков. Волна называется плоской и однородной. Дело в том, что, положив, мы задаем плоскость, на которой мгновенное значение функции постоянно. Любую такую плоскость называют фронтом волны. В некоторый момент фронт, для которого движется вдоль оси со скоростью ,. Плоскую однородную волну, распространяющуюся в противоположном направлении, следует описывать при помощи выражения (1.1) с изменением знака
(1.1а)
Обратимся к однородному волновому уравнению
(1.2)
Если пользоваться декартовой системой координат и рассматривать только процессы, не зависящие от и , то волновое уравнение примет вид
(1.3)
Путем непосредственной подстановки нетрудно убедиться, что функции, выражаемые формулами (1.1) и (1.1а), являются решениями одномерного волнового уравнения (1.3).
Общее решение уравнения (1.3) выражает формула
(1.4)
где и — произвольные дважды дифференцируемые функции. Это наложение двух плоских однородных недеформируемых: волн, распространяющихся в противоположных направлениях.
1.2 Гармонические волны
Если в (1.1) взять такую функцию, что то в каждой точке пространства процесс будет иметь характер гармонических колебаний
или
(1.5)
Такого рода плоская однородная волна называется гармонической, а введенный параметр — волновым числом.
Как видно, полная фаза гармонических колебании в пространстве при заданном убывает пропорционально ; значения функции при этом периодически повторяются. Пространственный период называют длиной волны. Очевидно, для произвольного должно быть . Поэтому из (1.5) следует, что , т. е.
(1.6)
а также
(1.7)
где —частота процесса.
Чтобы составить, более наглядное представление о гармонической волне, положим сначала и получим т.е. функцию, характеризующую распределение величины вдоль оси в начальный момент . Эта косинусоида (кривая на рис. 1.2а) представляет собой как бы «мгновенный снимок» процесса. Выберем следующий фиксированный момент и для него запишем
где то есть не что иное, как расстояние, пройденное волной за истекшее время . «Мгновенный снимок», соответствующий моменту , дает, таким образом, косинусоиду, смещенную по оси на расстояние (кривая 2 на рис. 1.2а). Итак, распространение гармонической волны — это движение косинусоидального распределения и вдоль прямой с постоянной скоростью.
Плоская однородная гармоническая волна выражается одним из частных решений одномерного волнового уравнения (1.3). Метод комплексных амплитуд приводит (1.3) к виду
(1.8)
Это не что иное, как одномерная форма уравнения Гельмгольца. Его общее решение можно выразить следующей суммой:
(1.9)
( и —комплексные константы: и ).
Рисунок 1.2
Умножая комплексную амплитуду на и отделяя вещественную часть, находим
(1.10)
Это наложение двух гармонических волн, распространяющихся в противоположных направлениях. Гармоническая волна, движущаяся вдоль оси , возникает как частное решение при.
В качестве другого частного решения рассмотрим наложение бегущих навстречу волн с одинаковыми амплитудами и начальными фазами . При этом из (1.10) получаем
(1.11)
Такой процесс называется стоячей волной. Его отличительной особенностью является синфазность колебаний. Действительно, в каждой области постоянства знака множителя фаза зависит только от времени (это величина или ). В зависимости от косинусоидального изменяется амплитуда гармонических колебаний . Ряд «мгновенных снимков» процесса для разных моментов времени дает картину, показанную на рис. 1.2б; косинусоидальное распределение и вдоль оси не движется (в отличие от бегущей волны), а испытывает «пульсации». При этом расстояния между соседними неподвижными нулями (узлами) равны ; таковы же и расстояния между соседними максимумами (пучностями).
... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...
... в прямоугольном волноводе. КСВ равен отношению главных осей эллипса, величины которых соответствуют сумме и разности амплитуд падающей и отраженной волн. Таблица 1 Параметры измерительных линий Тип прибора Диапазон частот, ГГц Собственный КСВ Погрешность измерений КСВ, % (КСВ<2) Размеры сечения ВЧ-тракта, мм Р1-22 Р1-3 P1-7 Р1-20 Р1-13А 1-7,5 2,5-10,35 ...
... -зон 4 ГГц); - эквивалентная изотропно излучаемая мощность (ЭИИМ): дБВт; - полоса пропускания ствола: МГц ; - поляризация при передаче сигнала : круговая левая. Координаты земной станции спутниковой системы связи, расположенной в г. Киеве таковы: с.ш, в.д. 1.2.1. Определение угла места и азимута приёмной антенны земной станции Зная координаты ИСЗ, определим угол места и азимут А. При этом ...
... СОПРОВОЖДЕНИЕ (ферриты полностью размагничены). Отраженная от цели волна, вертикальной поляризации, проходя параболическое зеркало, падает на рефлектор, отражается с поворотом вектора поляризации на 90 град., и направляется на параболическое зеркало, отражается от него и фокусируется на облучателе, формируя на его выходах следующие ДН: - на выходе Σ (суммарного) канала -однолепестковая ДН ...
0 комментариев