2.1 Структура ортофосфатов кальция
Ортофосфаты кальция могут классифицироваться в соответствии с тремя структурными типами: (1) структура типа апатита, Ca10(PO4)6X2, с общей формулой A10X6Y2 к которому принадлежит ГА, галогензамещённые ГА, окто- и тетракальцийфосфат; (2) структура типа глазерита, в которой кристаллизуются полиморфные модификации ТКФ и (3) Са-РО4 слоистые структуры, к которым относятся дикальцийфосфат дигидрат (СаНРО4·2Н2О), безводный дикальцийфосфат (СаНРО4) и монокальцийфосфат (Са(Н2РО4)2) [86]. Аморфный фосфат кальция, как возможный предшественник кристаллизации биологического апатита, связан с одним или более отмеченных структурных типов [87]. Кристаллическая структура апатита и возможные в ней изоморфные замещения катионов и анионов были описаны в [76, 88].
Кристаллическая структура ГА и его замещённых форм была предметом многочисленных исследований [89,90], результаты которых представлены в таблице 4. ГА кристаллизуется в гексагональной сингонии с пространственной группой P63/m и параметрами элементарной ячейки а = b = 9,432 Å, с = 6,881 Å. ГА представляет собой слоистый кристалл, содержащий более ста атомов в элементарной ячейке (рис.6).
Согласно [91], кристалл ГА имеет две структурных подсистемы: первую образуют Са-каналы с группами ОНˉ внутри них, а вторая – это остовый каркас (ОК), в который ионы Х – F-, Cl-, OH-, могут внедряться с малой вероятностью, а такие ионы, как СО, могут изоморфно замещать РО4-группы. Ионы ОНֿ, расположенные в кальциевых каналах, могут изоморфно замещаться на ионы Clֿ и Fֿ. На рис. 7 показан фрагмент структуры гидроксиапатита. Группы [РО4] образуют тетраэдры со средним расстоянием Re(P-O) = 1,53±0,02 Å. Атомы Са занимают в структуре ГА два кристаллографически независимых положения. Находящийся в положении 2 атом Са окружён шестью атомами кислорода, принадлежащих группам РО43- и ОН-, в то время как атом Са, занимающий положение 1, имеет окружение атомами кислорода, близкое к октаэдрическому. Атомы Са в положении 2 образуют треугольник в плоскости, перпендикулярной оси с. Треугольники повёрнуты друг относительно друга на 60° вдоль этой оси. Во фторапатитовой структуре атомы F размещены в центре таких треугольников, в случае же ГА группы ОН- располагаются несколько выше или ниже центра. Атомы Р окружены четырьмя атомами О и образуют тетраэдр практически правильной формы, лишь с небольшим искажением. При достаточно сложной координации атомов Са в ячейке ГА образуются 75 связей Са-О (без учёта связей с кислородом иона гидроксила), 24 связи Р-О, 6 связей Са-ОН и 2 связи ОН.
Стехиометрический ГА может быть также описан в моноклинной сингонии (пространственная группа Р21/b с параметрами решетки а = 9,4214(8) Å, b = 2а, с = 6,8814(7)Å, γ=120°), причём такое описание не связано с ограничениями, обусловленными зеркальной симметрией [86]. Снижение симметрии до моноклинной является результатом упорядочения расположения ОН- в кальциевых каналах, а также взаимного упорядочения этих каналов таких образом, что происходит двукратное увеличение параметра b элементарной ячейки. ГА моноклинной сингонии может быть получен только гидротермальным синтезом или термообработкой ГА в атмосфере водяного пара [92].
Кристаллическая структура ОКФ относится к триклинной сингонии с пространственной группой Р1 [93]. Параметры элементарной ячейки ОКФ: а = 19,692 Å, b = 6,835 Å, с = 6,835 Å, = 90,150, = 92,540, = 108,650. Существует до некоторой степени подобие структур ГА и ОКФ, которое заключается в том, что структура ОКФ содержит апатитовые структурные группировки с внедренными в них молекулами воды [87]. Такая модель гидратированной апатитовой структуры ОКФ может быть использована также для описания структур АКФ и гидратированных ТКФ, на дифрактограммах которых обнаруживаются рефлексы, характерные для ГА [87].
Тетракальцийфосфат кристаллизуется в моноклинной сингонии с пространственной группой Р21 и параметрами кристаллической ячейки а = 7,023 Å, b = 11,986 Å, с = 9,473 Å и = 90,900 [94]. Ионы Са2+ и РО43- расположены в четырех слоях, ортогональных оси b. Каждый слой включает каналы Са - РО4 и Са - Са. Пары смежных слоев формируют слой, близкий по структуре к апатиту. ТеКФ легко гидролизуется в присутствие ДКФД или ДКФ и воды с образованием ГА.
Известны 4 полиморфные модификации ТКФ: -ТКФ, устойчивый при температурах от 1120 до 14700С и метастабильный при температуре менее 11200С; '-ТКФ, стабильный при температурах выше 14700С; -ТКФ, стабильный при температурах ниже 11200С, и '-ТКФ - фаза, существующая при высоких давлениях [95-97]. -ТКФ легко гидролизуется с образованием ОКФ.-ТКФ имеет структуру, сходную с такой для витлокита, минерала состава Ca18(Mg,Fe)2H2(PO4)14, который обнаружен во многих продуктах биологической минерализации. Структура всех ТКФ относится к структурному типу глазерита (K3Na(SO4)2) [98]. -ТКФ кристаллизуется в моноклинной сингонии, пространственная группа Р21/а, с параметрами решетки а = 12,887 Å, = 27,280 Å, с = 15,219 Å, = 126,200 и Z = 24. -ТКФ кристаллизуется в ромбоэдрической сингонии, пространственная группа R3c, с параметрами элементарной ячейки а = 10,439 Å, с = 37,375 Å, Z = 21. Изоморфное замещение ионов кальция на ионы магния в ТКФ стабилизирует структуру витлокита.
Обжигом при 10000С смеси нанодисперсного SiО2 (10-100 нм) и осажденного ГА стехиометрического состава в мол. соотношении (0-2)/1 получали кремний-замещенный ТКФ моноклинной сингонии с параметрами решетки a = 12,863 Å, b = 9,119 Å, c = 15,232 Å, (при соотношении SiO2:ГА = 1:1) [99]. Параметры а и b практически не зависят от содержания кремнезема, тогда как параметр решетки с существенно возрастает (от 15,222 Å) с увеличением содержания кремнезема до 1 моля в смеси. Кремнезем дестабилизирует структуру ГА, способствуя потере радикалов ОН-, за которой следует превращение ГА в кремний-замещенный ТКФ состава от Ca3(Si0,1P0,9O3,95)2 до Ca3,08(P0,92Si0,08O4)2. Механизм компенсации избыточного заряда иона кремния по сравнению с фосфором- образование вакансий по кислороду, либо избыточное содержание кальция. Отмечена аморфизация продукта взаимодействия кремнезема с ГА.
Так называемый аморфный кальцийфосфат, АФК, в общем случае описываемый формулой Са3(РО4)2·nН2О, может также рассматриваться как ТКФ [100]. Это соединение может играть важную роль в процессах минерализации костных тканей в качестве переходной фазы по отношению к ГА. Рентгеноструктурными исследованиями с использованием метода функций радиального распределения показано, что структурной единицей АФК является примерно сферический кластер ионов Са9(РО4)6 размером около 9.5 Å [101]. Молекулы воды расположены в пространстве между агрегатами таких кластеров.
ДКФД имеет моноклинную структуру типа брушита с пространственной группой Ia и параметрами элементарной ячейки а = 5,812 Å, b = 15,180 Å, с = 6,239 Å и = 116,420, Z = 4. Молекулы воды связаны с ионами кальция и расположены между плоскостями, образованными ионами НРО42- и Са2+. Безводный ДКФ кристаллизуется в триклинной сингонии, пространственная группа Р 1, с параметрами элементарной ячейки а = 6,910 Å, b = 6,627 Å, с = 6,998 Å, = 96,340, = 103,820 и = 88,330, Z = 4.
Существует мнение, что все ортофосфаты кальция могут быть описаны в как соединения со структурой типа глазерита, если допустить существование вакансий, приводящих к отклонению от соотношения катионов и анионов 2:1, характерного для глазерита [102].
0 комментариев