Исследовать и изучить геометрические свойства кривых второго порядки (эллипса, гиперболы и параболы), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершины, а также научиться строить графики данных кривых в канонической и прямоугольной декартовой системах координат.
Постановка задачи
Дано уравнение кривой второго порядка:
. (1)
Задание. Для данного уравнения кривой второго порядка с параметром :
I. Определить зависимость типа кривой от параметра с помощью инвариантов.
II. Привести уравнение кривой при к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
III. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка.
IV. Получить уравнения канонических осей в общей системе координат.
V. Построить график кривой в канонической и общей системах координат.
Получение канонической системы координат. Построение графиков
I. Тип кривой второго порядка в зависимости от параметра
В прямоугольной декартовой системе координат кривая второго порядка задается в общем виде уравнением:
,
если хотя бы один из коэффициентов , , отличен от нуля.
Для уравнения кривой второго порядка (1) имеем:
Теперь определим тип данной нам кривой (1) с помощью инвариантов. Инварианты кривой второго порядка вычисляются по формулам:
;
;
.
Для данной кривой они равны:
1). Если , то уравнение кривой (1) определяет кривую параболического типа, но . Таким образом, если , то уравнение (1) определяет кривую параболического типа. При этом , то есть: если , то уравнение (1) определяет параболу.
2). Если, то данная кривая — центральная. Следовательно, при данная кривая — центральная.
· Если , то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом . В соответствии с признаками кривых второго порядка получим: если, то уравнение (1) определяет эллипс.
· Если , то уравнение (1) определяет кривую гиперболического типа. Следовательно, если , то уравнение (1) определяет кривую гиперболического типа.
а) Если и , то уравнение (1) определяет две пересекающиеся прямые. Получим:
Следовательно, если , то уравнение (1) определяет две пересекающиеся прямые.
б) Если и , то данная кривая — гипербола. Но при всех за исключением точки . Следовательно, если , то уравнение (1) определяет гиперболу.
Используя полученные результаты, построим таблицу:
Значение параметра β | |||||
Тип кривой | Эллипс | Парабола | Гипербола | Две пересекающиеся прямые | Гипербола |
II. Переход от общего уравнения кривой к каноническому
Рассмотрим теперь случай, когда, и исследуем данное уравнение кривой второго порядка с помощью инвариантов. Из вышеприведенной таблицы видим, что при уравнение (1) определяет гиперболу и принимает вид:
(2.1)
Приведем уравнение кривой (2.1) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
Мы установили, что данная кривая — центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой. Совершим параллельный перенос начала координат в точку . При этом координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями
Подставляя эти выражения в уравнение (2.1), получим:
(2.2)
Раскрывая скобки и приводя подобные члены, получим:
(2.3)
В уравнении (2.3) коэффициенты при приравняем к нулю. Получим систему уравнений относительно
(2.4)
Решив систему (2.4), получим:
Центр кривой имеет координаты , . Поставим найденные значения в уравнение (2.3). В новой системе координат в уравнении (2.3) коэффициенты при равны нулю и уравнение примет вид
,
. (2.5)
Так как , то дальнейшее упрощение уравнения (2.5) мы достигаем при помощи поворота осей координат на угол . При повороте осей координат на угол координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями
(2.6)
Подставляя (2.6) в уравнение (2.5), получим
Раскроем скобки и приведем подобные члены
Приводя подобные члены, получим уравнение
(2.7)
Теперь выберем такой угол , что в уравнении (2.7) коэффициент при произведении равен нулю. Получим уравнение относительно синуса и косинуса угла :
. (2.8)
Разделим правую и левую части данного уравнения почленно на . Мы можем это сделать, так как , потому что если (то есть ), то при подстановке в уравнение (2.8) получим, что и , что противоречит основному тригонометрическому тождеству . Получим уравнение
. (2.9)
Решая уравнение (2.9), получим
, .
Зная значение тангенса, можно вычислить значения синуса и косинуса по следующим формулам: , . Подставляя соответствующие значения тангенса, получаем:
Возьмем для определенности . Тогда соответствующие значения синуса и косинуса есть
, (2.10)
Подставляя (2.10) в уравнение (2.7), получаем:
и преобразовав данное уравнение, получим уравнение вида:
И, соответственно, уравнение
(2.11)
— это каноническое уравнение исходной гиперболы.
III. Фокусы, директрисы, эксцентриситет и асимптоты кривой
Пусть и — фокусы, — эксцентриситет, — центр, а — директрисы данной гиперболы. Известно, что фокусы имеют координаты: , , где и . Для данного уравнения гиперболы (2.11) получаем, что , , и значит . Отсюда получаем , .
Эксцентриситет гиперболы (2.11)
.
Директрисы гиперболы задаются уравнениями: и . Подставляя найденные значения и , получаем:
Прямые и в канонической системе координат называются асимптотами гиперболы. Для данной гиперболы (2.11) асимптоты имеют вид:
IV. Уравнения осей гиперболы в общей системе координат
Теперь напишем уравнения осей новой системы в исходной системе координат .
Так как система — каноническая для данной гиперболы, то ее центр находится в центре кривой — , то есть оси и проходят через точку .
В пункте II было установлено, что угловой коэффициент оси .
Уравнение прямой, проходящей через данную точку с заданным угловым коэффициентом , имеет вид . Следовательно, ось в системе координат задана уравнением , или , где в роли точки выступает центр гиперболы точка .
Так как ось перпендикулярна оси , то ее угловой коэффициент . Следовательно, ось в системе координат задана уравнением , или .
V. Построение графиков гиперболы
Используя полученные в ходе выполнения задания данные, построим гиперболу (2.1) в исходной системе координат (см. рис. 1) и гиперболу (2.11) в канонической системе координат (см. рис. 2).
Рисунок 1.
Рисунок 2.
Вывод
Таким образом, из вышеприведенного решения видим, что с помощью инвариантов можно отследить тип кривой второго порядка с параметром , а используя параллельный перенос и поворот осей координат, можно привести кривую второго порядка от общего вида к каноническому.
Список используемой литературы
1. Л.В. Бобылева, Л.С. Брюхина. Линейная алгебра и аналитическая геометрия. Исследование кривых второго порядка.— Дубна: Международный университет природы, общества и человека «Дубна», 2003.
2. Ильин В. А., Позняк Г. Д. Аналитическая геометрия. — М.: Физматлит , 2002.
3. М.Я. Выгодский. Справочник по высшей математике.— М: Наука, 1966.
4. А.В. Ефремов, Б.П. Демидович. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа (Ч. 1). — М.: Наука, 1993.
Похожие работы
... Такая гипербола называется сопряженной к гиперболе её асимптоты — те прямые ay − bx = 0 и ay + bx = 0. Говорят о паре сопряжённых гипербол. 1.3 Парабола Параболой называется кривая второго порядка, которая в некоторой декартовой системе координат описывается уравнением y2 = 2 px где p > 0 — параметр параболы. Такое уравнение называется каноническим уравнением параболы ...
... , повысить интерес к учению; 3) углубить знания, полученные на уроках математики. Ход занятия I. Организационный момент II. Основная часть 1) Лекция об истории изучения плоских кривых [см. гл. I § 1] 2) Задание Ребята, разгадаем с вами кроссворд: ПАСКАЛЬ ПАПИРУС АПОЛЛОНИЙ РОБЕРВАЛЬ АРХИМЕД ГЕОМЕТРИЯ По горизонтали 1. Учёный, считавший, что дуга спирали ...
... кривой второго порядка и приведя его к каноническому виду, мы установили, что данная кривая — эллипс. Мы получили каноническое уравнение гиперболы при помощи преобразований параллельного переноса и поворота координатных осей. Исследование формы поверхности второго порядка Теоретическая часть Поверхностью второго порядка S называется геометрическое место точек, декартовы прямоугольные ...
... дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности. Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например: · параболическая спираль (а - r)2 = bj, · гиперболическая спираль: r = а/j. · Жезл: r2 = a/j · si-ci-cпираль, параметрические уравнения которой имеют вид: , [si (t) и ci ...
0 комментариев