3.2 Подсчет нагрузок
1. Постоянная нагрузка от покрытия подсчитывается по фактическому весу всех элементов (обшивок, обрамления и среднего слоя) панели. Для возможности дальнейшего сравнения нескольких вариантов в расчетах будем использовать нормативное значение нагрузки и с учетом коэффициента надежности расчетное значение .
2. Снеговую нагрузку будем подсчитывать по [10].
Вариант 1. При равномерно распределенной снеговой нагрузке интенсивностью
(=1,6–коэффициент надежности по нагрузке, согласно [10] при ).
Вариант 2. При распределенной по треугольнику треугольной нагрузке с максимальной ординатой
3. Ветровая нагрузка определяется по [10].
Характер действия ветровой нагрузки показан на рис.2.
Интенсивность ветровой нагрузки подсчитывается по формулам:
где – скоростной напор для второго района;
C–аэродинамический коэффициент;
B–коэффициент, учитывающий изменение скоростного напора по высоте (для местности типа B [10 табл.6] при высоте H=11м. К=0,44 ; при H=15,2 м. К=0,61 ; при H=17 м. К=0,68; другие значения К находятся по интерполяции);
–коэффициент надежности по нагрузке, равный 1,4.
Рис.3 Схема ветровой нагрузки на арку.
Для каждой зоны (см. рис.3 ) принимаем средние значения коэффициентов Ci и Ki.
При и имеем Ce1= -0,2; Ce2= -0,8; Ce3= -0,4.
Другие коэффициенты показаны на рис.16.
4. Собственный вес арки подсчитываем по формуле
где qн и pн – соответственно постоянная (вес покрытия) и временная (снег) нагрузки, действующие на арку;
Kс.в – коэффициент собственного веса, для арки принимаем равным 4.
Величина распределенной нагрузки от собственного веса:
– нормативная
– расчетная
На 1 м2 горизонтальной проекции
Погонные нагрузки на арку при шаге 6 м.:
– постоянная
– снеговая:
Вариант 1
Вариант 2
– ветровая:
Полная расчетная схема рамы дана на л. 1.
3.3 Определение усилий в сечениях арки
Усилия в сечениях арки подсчитываем с помощью ЭВМ по программе “Арка”.
По результатам распечатки находим расчетные значения усилий M, Q, N при различных видах загружения и различных сочетаниях нагрузок. Результаты расчета приведены в таблице 3.
Таблица 3.
L | f | r | n | Нагрузки | |||||||
q | s1 | s2 | s3 | w1 | w2 | w3 | w4 | ||||
42.00 | 6.00 | 39.75 | 5 | 3.10 | 9.45 | 19.20 | 9.60 | 0.49 | 2.19 | 2.19 | 0.98 |
... древесины. Коэффициент, учитывающий влияние деформаций сдвига Прогиб с учетом влияния деформаций сдвига Жесткость балки обеспечивается. 1.3 Статический расчет поперечной рамы с учетом сейсмических нагрузок Расчет поперечной рамы выполним на два сочетания нагрузок: основное и особое. Основное сочетание включает нагрузки от собственного веса конструкций, веса снега и ветра; особое сочетание - ...
... 2 1-2 8-04 8-13 8-39 8-47 1 ПП 8-47 9-21 0,57 0,08 0,9 3 1-3 8-38 8-47 9-13 9-21 1 ПП 9-21 9-55 0,57 0,08 0,9 4 1-1 9-12 9-21 9-47 9-55 1 ПП 9-55 10-29 0,57 0.08 0,9 12. Расчет потребности в материалах и полуфабрикатах для монтажа одноэтажных промышленных зданий № Наименование технологического процесса Ед. изм Объем работ ...
... для определения основных параметров монтажного крана Таким образом, необходимо подобрать наиболее эффективный комплект монтажных кранов для монтажа сборных железобетонных конструкций одноэтажного промышленного здания. – Учитывая то, что каркас здания состоит из крупных элементов, которые за исключением сборных плит, располагаемых перед монтажом на довольно значительном расстоянии друг от ...
... , применяемые при производстве скипидара и канифоли, являются пожароопасными. В соответствии с этим наш цех относится к категории Б. 1.3 Конструктивные схемы и объемно-планировочные параметры здания Большое значение имеют правильно запроектированные объмно-планировочные и конструктивные решения промышленных зданий, так как от них в значительной степени зависят возможности расположения ...
0 комментариев