5. ДИНАМИЧЕСКИЙ РАСЧЕТ ДВИГАТЕЛЯ
В ходе динамического расчета определяют силы и моменты, действующие на детали кривошипно-шатунного механизма (КШМ).
Рис 6.1. Развернутая индикаторная диаграмма двигателя
а). Строим развернутую диаграмму давления газов в координатах рг - j о п.к.в, используя построенную свернутую индикаторную диаграмму (Приложение 1) действительного цикла в ходе теплового расчета двигателя. Перестроение индикаторной диаграммы в развернутую выполняется графическим путем по методу проф. Ф.А. Брикса. Развертку индикаторной диаграммы начинают от ВМТ в процессе хода впуска. На этой диаграмме наносим также давление от инерционных сил ( рj ) и давление от суммарных сил (р1 ),
р1 = рг ± рj
где рj= Fj/pD2/4 .
б). Определяем силу инерции, действующую на детали КШМ, движущихся поступательно по формуле:
Тип двигателя | Масса поршневой группы (поршень из алюмин. сплава) () , | Масса шатуна (), |
Дизель (D=80…150мм) | 28 | 35 |
Fj = - mj× jn ,
где mj – масса деталей КШМ, движущихся поступательно:
к г,
где = mуд.п*Fп= mуд.п*π*D2/4=28*3,14*11,92/4=2957,63г = 2,958 кг- масса поршневой группы,
-масса шатуна, отнесенная к поршневому пальцу:
=0,275*3,697=1,017 кг,
=mуд ш*π*D2/4= 35 *3,14*11,92/4=3697,04 г =3,697 кг -масса шатуна,
jn – ускорение поршня.
Поправка Брикса:
Результаты расчета сводятся в табл. 9.
Таблица 9
Расчет сил, давления действующих в КШМ двигателя
Рг,Мпа | jп, м/с2 | Fi,Н | Рj,Мпа | ∑P1,Мпа | |
0 | 0,21 | 4344,70 | -17270,19 | -1,55 | -1,34 |
30 | 0,21 | 3434,47 | -13652,02 | -1,23 | -1,02 |
60 | 0,21 | 1275,83 | -5071,40 | -0,46 | -0,25 |
90 | 0,21 | -896,53 | 3563,69 | 0,32 | 0,53 |
120 | 0,21 | -2172,35 | 8635,09 | 0,78 | 0,99 |
150 | 0,21 | -2537,95 | 10088,33 | 0,91 | 1,12 |
180 | 0,21 | -2551,65 | 10142,81 | 0,91 | 1,12 |
210 | 0,21 | -2537,95 | 10088,33 | 0,91 | 1,12 |
240 | 0,24 | -2172,35 | 8635,09 | 0,78 | 1,02 |
270 | 0,36 | -896,53 | 3563,69 | 0,32 | 0,68 |
300 | 0,73 | 1275,83 | -5071,40 | -0,46 | 0,28 |
330 | 2,48 | 3434,47 | -13652,02 | -1,23 | 1,25 |
360 | 8,52 | 4344,70 | -17270,19 | -1,55 | 6,96 |
380 | 13,44 | 3927,00 | -15609,84 | -1,40 | 12,04 |
390 | 5,51 | 3434,47 | -13652,02 | -1,23 | 4,28 |
420 | 1,75 | 1275,83 | -5071,40 | -0,46 | 1,29 |
450 | 0,89 | -896,53 | 3563,69 | 0,32 | 1,21 |
480 | 0,62 | -2172,35 | 8635,09 | 0,78 | 1,39 |
510 | 0,51 | -2537,95 | 10088,33 | 0,91 | 1,42 |
540 | 0,21 | -2551,65 | 10142,81 | 0,91 | 1,12 |
570 | 0,21 | -2537,95 | 10088,33 | 0,91 | 1,12 |
600 | 0,21 | -2172,35 | 8635,09 | 0,78 | 0,99 |
630 | 0,21 | -896,53 | 3563,69 | 0,32 | 0,53 |
660 | 0,21 | 1275,83 | -5071,40 | -0,46 | -0,25 |
690 | 0,21 | 3434,47 | -13652,02 | -1,23 | -1,02 |
720 | 0,21 | 4344,70 | -17270,19 | -1,55 | -1,34 |
в). Определяем и строим суммарную силу (рис.2), действующую на поршень.
где численные значения суммарного давленияберутся из диаграммы, представленной Приложении 3.
Рис. 2. Диаграмма суммарной силы
г). Определяем силы FN; Fs; Fк и Ft с интервалом 30о, оформляем их значения в табличной форме и строим развернутые диаграммы сил, действующих в КШМ двигателя (рис.3.)
Боковая сила, прижимающая поршень к цилиндру:
FN = Få× tgb.
Сила, действующая вдоль шатуна:
Fs=Få /cosb.
Сила, направленная по радиусу кривошипа:
.
Тангенциальная сила, создающая вращающий момент на коленчатом валу:
.
Результаты расчета сводятся в табл. 10.
Таблица 10 Расчет сил, действующих в КШМ двигателя
∑FкН | FN,кН | Fs,кН | Fk,кН | Ft,кН | |
0 | -14,946865 | 0 | -14,94686502 | -14,94686502 | 0 |
30 | -11,3286973 | -1,370772376 | -11,24994769 | -9,130930044 | -6,853861881 |
60 | -2,74808038 | -0,579844961 | -2,688924055 | -0,871141482 | -2,671134133 |
90 | 5,887014359 | 1,442318518 | 5,715547921 | -1,442318518 | 5,887014359 |
120 | 10,95841921 | 2,312226453 | 10,72252369 | -7,484600319 | 8,328398598 |
150 | 12,41165636 | 1,50181042 | 12,32537871 | -11,49319379 | 4,902604263 |
180 | 12,46613416 | 0 | 12,46613416 | -12,46613416 | 0 |
210 | 12,42277275 | -1,503155502 | 12,33641782 | -11,50348756 | -4,906995235 |
240 | 11,32525991 | -2,389629842 | 11,08146762 | -7,73515252 | -8,607197533 |
270 | 7,543355724 | -1,848122152 | 7,323646334 | -1,848122152 | -7,543355724 |
300 | 3,065788971 | -0,646881473 | 2,999793514 | 0,971855104 | -2,97994688 |
330 | 13,87214747 | -1,678529844 | 13,77571745 | 11,18095086 | -8,392649219 |
360 | 77,38582879 | 0 | 77,38582879 | 77,38582879 | 0 |
390 | 47,62149233 | 5,762200572 | 47,29045912 | 38,38292282 | 28,81100286 |
420 | 14,39338529 | 3,037004295 | 14,08354725 | 4,562703136 | 13,9903705 |
450 | 13,45727254 | 3,297031773 | 13,06531315 | -3,297031773 | 13,45727254 |
480 | 15,47167152 | 3,26452269 | 15,13862184 | -10,56715165 | 11,75847035 |
510 | 15,7910374 | 1,910715526 | 15,68126852 | -14,62250063 | 6,237459773 |
540 | 12,46613416 | 0 | 12,46613416 | -12,46613416 | 0 |
570 | 12,41165636 | -1,50181042 | 12,32537871 | -11,49319379 | -4,902604263 |
600 | 10,95841921 | -2,312226453 | 10,72252369 | -7,484600319 | -8,328398598 |
630 | 5,887014359 | -1,442318518 | 5,715547921 | -1,442318518 | -5,887014359 |
660 | -2,74808038 | 0,579844961 | -2,688924055 | -0,871141482 | 2,671134133 |
690 | -11,3286973 | 1,370772376 | -11,24994769 | -9,130930044 | 6,853861881 |
720 | -14,946865 | 0 | -14,94686502 | -14,94686502 | 0 |
|
|
|
|
д). Строим диаграмму вращающего момента, снимаемого с коленчатого вала (рис.4.)
Тe = Ft × r ,
где r – радиус кривошипа, r = S/2.
Рис.4. Диаграмма вращающего момента одного цилиндра двигателя
Рис 5 Диаграмма восьми цилиндрового двигателя
Для построения диаграммы суммарного вращающего момента многоцилиндрового двигателя производим алгебраическое сложение величин Те одноцилиндрового двигателя с угловым сдвигом 720/i = 720/8 = 90 (i- число цилиндров).
Таким образом, диаграмму величин Те (рис.4.) необходимо разделить на 8 частей и алгебраически сложить их ординаты независимо от порядка работы цилиндров.
Рис. 6 Диаграммы суммарного вращающего момента
е). Строим диаграмму износа шатунной шейки
Результирующая сила Rшш, приложенная к шатунной шейке, определяется графическим сложением силы Fs , действующей по оси шатуна, с центробежной силой вращающихся масс кривошипа Fсш:
mшк=0,725mш=0,725*3,697=2,6803 кг ,
Fсш= – mшк × rw2 = – 2,6803*0,0595*2412 = –9262,6 Н = – 8,262 кН .
Rшш,кН | Те,Нм | |
23,20886502 | 0 | 0 |
18,69463662 | -407,8047819 | 30 |
9,515735961 | -158,9324809 | 60 |
11,35036281 | 350,2773543 | 90 |
17,81341194 | 495,5397166 | 120 |
20,35443957 | 291,7049536 | 150 |
20,72813416 | 0 | 180 |
20,36548798 | -291,9662165 | 210 |
18,16570225 | -512,1282532 | 240 |
12,61415021 | -448,8296656 | 270 |
7,875677496 | -177,3068394 | 300 |
8,885765867 | -499,3626286 | 330 |
69,12382879 | 0 | 360 |
41,68145723 | 1714,25467 | 390 |
14,47118737 | 832,4270446 | 420 |
17,74005073 | 800,7077164 | 450 |
22,19906702 | 699,628986 | 480 |
23,71932279 | 371,1288565 | 510 |
20,72813416 | 0 | 540 |
20,35443957 | -291,7049536 | 570 |
17,81341194 | -495,5397166 | 600 |
11,35036281 | -350,2773543 | 630 |
9,515735961 | 158,9324809 | 660 |
18,69463662 | 407,8047819 | 690 |
23,20886502 | 0 | 720 |
Графическое построение силы Rшш в зависимости от угла поворота кривошипа производится в виде полярной диаграммы с полюсом в точке Ош. Сначала строят полярную диаграмму силы FS откладывая в прямоугольных координатах с полюсом О ее составляющие Fτ, Fк для различных углов j поворота коленчатого вала. Полученные точки конца вектора Fτ, последовательно в порядке углов соединяют плавной кривой, которая является полярной диаграммой силы Fτ с полюсом в точке О. Чтобы получить полярную диаграмму нагрузки на шатунную шейку, достаточно переместить на полученной полярной диаграмме силы Fτ полюс О по вертикали на величину вектора Fсш в точку Ош. Проекция на вертикаль любого вектора полярной диаграммы дает значение нормальной силы, действующей на шатунную шейку и направленную по радиусу кривошипа. Полярная диаграмма, перестроенная в прямоугольные координаты Rшш и j, позволяет определить среднее значение Rшш.cp. Пользуясь полярной диаграммой, можно построить так называемую диаграмму износа шейки. Для построения диаграммы под углом 60° к направлению каждой силы Rшш в обе стороны проводят кольцевые полоски, высота которых пропорциональна соответствующей силе Rшш . Суммарная площадь этих полосок в итоге представляет собой диаграмму износа. Из диаграммы износа шейки видна зона наименьших давлений на нее. Следовательно, в этом месте должно находиться отверстие для подвода масла к подшипнику.
7. КОМПОНОВКА ДВИГАТЕЛЯ
7.1 Компоновка кривошипно-шатунного механизма (КШМ) двигателя
При компоновке V-образного двигателя проводятся под углом g/2 оси левого и правого цилиндров по отношению к вертикальной оси. В одном из цилиндров намечается положение осей шатунной шейки и поршневого пальца при нахождении поршня этого цилиндра в ВМТ, а положение оси поршневого пальца другого цилиндра определяется засечкой на ось этого цилиндра из точки В дугой радиуса, равный длине его шатуна lш. Угол развала g блока цилиндров определяется из соотношения: g=kj/2, где k-целое число (1,2); j-угол между кривошипами (j=720/i); i- число цилиндров в одном ряду блока.
... 137.1 31.2 217.5 1590 634.3 105.6 29.7 360 1060 582.0 64.60 27.9 630 530 482.5 26.78 25,63 957.1 4. Заключение Первый раздел курсового проекта “Тепловой и динамический расчет двигателя” выполнен в соответствии с заданием на основе методической и учебной технической литературы. Рассчитанные показатели рабочего цикла, работы, размеров, кинематики и динамики проектируемого ...
... двигателя Динамический расчет кривошипно-шатунного механизма выполняется с целью определения суммарных сил и моментов, возникающих от давления газов и от сил инерции. Результаты динамического расчета используются при расчете деталей двигателя на прочность и износ. В течение каждого рабочего цикла силы, действующие в кривошипно-шатунном механизме, непрерывно изменяются по величине и направлению. ...
... и точки расширения соединяем плавными кривыми. После этого достраиваем процессы газообмена. Полученная индикаторная диаграмма двигателя внутреннего сгорания дизеля MAN изображена на рисунке 14.1. Рисунок 14.1 - Индикаторная диаграмма ДВС MAN. Выводы Результаты расчетов и общепринятые границы изменения расчетных параметров сводим в таблицу. Таблица - Результаты расчетов. НАЗВАНИЕ ...
... вала. Таблица 4.3. Результаты расчета крутящего момента По полученным в табл 8. данным Мкр строим график в масштабе Мм= и Мφ=3º в мм. Определяем средний крутящий момент двигателя: – по данным теплового расчета: Мкр.ср.= Мi = Ме / ηм , Н×м ; (116) Мкр.ср.= 220,81 / 0,879 = 251,2 Н×м. – по площади, заключенной под кривой Мкр: Мкр.ср= (F1-F2) ·Мм / ...
0 комментариев