3.7 Подбор оборудования
3.7.1 Подбор поверхностного воздухоохладителя
Исходя из производительности кондиционера принимаем к установке однорядную Секцию 03.1010.0 [1. стр. 295 таб. 92]
Определяем массовую скорость воздуха в воздухоохладителе:
ύρ = Lк · ρ/fж , кг/(м2 · сек)
где fж – живое сечение для прохода воздуха, м2
fж = 1.44 м2 [1. стр. 295 таб. 92]
ύρ = 4.07 · 1.29/1.44 = 3.65 кг/(м2 · сек)
Определяем расход тепла на охлаждение воды :
Q= Кд · F · ∆t , вт
где К – коэффициент теплопередачи
К = 8 ккал/ м2 · час · °С [7. стр. 122 таб. 60]
F – площадь теплопередающей поверхности, м2
F = 55.8 м2 [1. стр. 295 таб. 92]
∆t = (tн–tв) = (28.5–25) = 3.5 °С
Q= 8 · 55.8 · 3.5 = 1562.4, ккал/час = 1.8175 квт
Для охлаждения воздуха в воздухоохладителе принимаем артезианскую воду с температурой 9 °С [2. стр. 203]. Температура воды на выходе из теплообменника 17 °С.
Определяем скорость движения воды wвд в трубках воздухоохладителя:
wвд = Q / ρвд · fт · свд · (tвд1 - tвд2), м/cек
где свд – теплоемкость воды
свд = 4.19
fт – живое сечение по теплоносителю, м2
fт = 0.00127 м2 [1. стр. 296 таб. 93]
ρвд – плотность воды, кг/ м3
ρвд = 958 кг/ м3
tвд1 - температура воды на выходе из воздухоохладителя, °С
tвд2 - температура воды на входе в воздухоохладитель, °С
Q- расход тепла на охлаждение воды, кВт.
wвд = 1.8175 / 958 · 0.00127 · 4.19 · (17 - 9) = 0.045 м/cек.
Требуемая теплопередающая поверхность определяется по формуле :
F = Q / K((tв1 + tв2)/2 – (tвд1 – tвд2)/2), м2
где Q - расход тепла на охлаждение воздуха, вт
tв1 и tв2 - температура воздуха до и после теплообменника, °С
tвд1 и tвд2 – температуры поступающей и обратной воды, °С
К – коэффициент теплопередачи, вт/(м2 · град)
F = 1817.5 / 8( (25+ 28.5)/2 – (9 + 17)/2) = 16.52 м2
Таким образом, принятая к установке секция 03.1010.0 имеет поверхность охлаждения 55.8 м2 , то есть запас составляет 70.4 %. Сопротивление принятой секции по воздуху составляет Н = 3.1 мм. вод. ст. [1. стр. 295 таб. 92]
3.7.2 Подбор оросительной камеры
Задаемся коэффициентом орошения В = 1.0 кг воды/кг воздуха, при этом коэффициент эффективности оросительной камеры будет равен η = 0.87 [1. стр. 300 таб.98]
Определяем температуру на выходе из оросительной камеры :
tвд2 = (tв2 – (1 - η) · tв1)/ η , °С
где tв2 и tв1 - температура воздуха до и после теплообменника, °С
tв2 = 25 °С
tв1 = 28.5 °С
tвд2 = (25 – (1 – 0.87) · 28.5)/ 0.87 = 24.5 °С
Определяем расход охлаждающей воды:
Gвд = В · Lк · ρв = 1.0 · 4.07 · 1.29 = 5.29 кг/сек
В соответствии с производительностью кондиционера по воздуху (Lк = 4.07 м3/сек)
Выбираем камеру орошения к кондиционеру КТ-30. [1. стр. 298 таб.96]
Эта камера может иметь 108 или 144 форсунки. В первом случае нагрузка на одну форсунку составит:
5.29/108 = 48.9 · 10-3 кг/сек,
но такое количество воды не может проходить даже при диаметре выходного отверстия форсунки 5.5 мм и давлении 2.5 бар. [1. стр. 299 таб.97]
Во втором случае нагрузка на одну форсунку составит:
5.29/144 = 36.7 · 10-3 кг/сек
В соответствии с этой нагрузкой выбираем форсунки диаметром 5.5 мм. Давление воды перед форсунками - 1.5 бар.
Таким образом, к установке принимаем три секции орошения с индексом 03.0020.0
Нагрузка на камеру орошения равна холодопроизводительности кондиционера.
Начальную температуру охлаждающей воды находим из теплового баланса:
Q0 = Lк · ρ · (iв1 – iв2) = Gвд · свд · (tвд2 – tвд1)
tвд1= Gвд · свд · tвд2 - Q0 / Gвд · свд = 5.29 · 4.19 · 24.5 – 15.75/ 5.29 · 4.19 = 23.7 °С
3.7.3 Подбор фильтров
Исходя из номинальной производительности по воздуху выбираем сетчатый самоочищающийся фильтр с индексом 03.200.0. [1. стр. 302 таб.99]
Движение сетки фильтра осуществляется электродвигателем АОЛ-2-21-4 мощностью 1.1 квт
3.7.4 Подбор воздушных клапанов
Для пропуска наружного воздуха принимаем клапан с индексом 03.3213.0, тип привода – электрический. [1. стр. 304 таб.100]
Для обводного канала воздухоохладителя принимаем клапан с индексом 03.3273.0,
Тип привода – электрический. [1. стр. 304 таб.100]
... А вот традиционные центральные системы кондиционирования надо закладывать в проект еще на стадии строительства. Благодаря целому ряду уникальных достоинств VRV системы составили серьезную конкуренцию традиционным центральным системам кондиционирования воздуха, а в ряде стран, например в Японии, практически полностью вытеснили их с рынка. Конечно, на этом прогресс в развитии климатической техники ...
... поверхностным воздухоохладителем. В 1902 г. установкой с таким же воздухоохладителем и абсорбционной холодильной машиной был оборудован Ганноверский национальный банк. Человеком, сыгравшим огромную роль в развитии кондиционирования воздуха, был Уиллис Хэвиленд Кэрриер. Он изобрёл невиданное прежде устройство, которое прогоняло воздух поверх охлажденных трубок. При этом влага оседала – это было ...
... рабочих 6 – 8 %, младшего обслуживающего персонала 2 – 3 %. 4 НАЗНАЧЕНИЕ, СОСТАВ И ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО УЧАСТКА ПО РЕМОНТУ СИСТЕМ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА 4.1 Работы, связанные с ремонтом систем кондиционирования воздуха В настоящее время в пассажирском вагонном депо работы, связанные с ремонтом систем кондиционирования воздуха выполняются в основном на открытых и временно ...
... угла наклона луча процесса в помещении. εт = (40290,8·3,6)/12,54 = 11567 εх = (41945,2·3,6)/11,4 = 13246 3 РАСЧЕТ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА 3.1 Выбор и обоснование типа систем кондиционирования воздуха Выбор и обоснование типа СКВ осуществляют на основе анализа условий функционирования кондиционируемого объекта, указанных в задании на проектирование. Исходя из ...
0 комментариев