2. Разработка структурной схемы САУ

В расчетных системах управления ЭП для повышения диапазона регулирования и качества динамических процессов применяют различные структуры построения регуляторов, используются различные обратные связи.

Для статического и динамического расчета САУ необходимо составить структурную схему, на которой все элементы системы нужно представить их передаточными функциями. Это двигатель, ТП, регуляторы, датчики обратных связей (рисунок 6).

Рис. 2 -Структурная схема САУ

Передаточная функция ТП вместе с системой импульсно-фазового управления, как правило апроксируется апериодическим звеном первого порядка с постоянной времени Tmn в пределах времени 0,006-0,01 с, что обусловлено дискретностью подачи отпирающих импульсов и особенностью работы ТП.

Передаточная функция ТП имеет вид:

 (5.1)

где Kmn - коэффициент передачи ТП.

Коэффициент передачи ТП изменяется в зависимости от величины управляющего напряжения и рассчитывается с использованием

регулировочных характеристик Ed0 = f(α).

, (5.2)

где ΔEd — относительное значение ЭДС тиристорного преобразователя, В;

ΔUy - относительное значение напряжения, В.

Электродвигатель постоянного тока при подключении обмотки возбуждения к постоянному напряжению, работает с постоянной магнитным потоком.

Передаточная функция имеет вид:

 (5.3)

т.к. 4Тям,

Якорная цепь ДПТ описывается передаточной функцией:

 (5.7)

где Еn - ЭДС преобразователя. В;

Едв - ЭДС двигателя, В.

Передаточная функция механической цепи ДПТ:


(5.5)

Поведение угловой скорости вращения описывается передаточной функцией электромеханического преобразователя в соответствии с основным уравнением движения ЭП:

(5.6)

Коэффициент обратных связей рассчитывается по формулам:

Коэффициент обратной связи по скорости Кос определяется по формуле:

(5.7)

где = 10 В — максимальное напряжение управления;

- максимальная скорость механизма, рад/с.

(5.8)

 

Коэффициент обратной связи по току Кот:

Кот = Кдт ∙ Кш = 102,04∙0,0006 = 0,061 (5.9)

где Кдт - коэффициент датчика тока;


 (5.10)

где Кш - коэффициент шунта.

Выбран шунт: тип 75 ШСН-5;

Номинальный ток: Iнш = 75А;

Номинальное падение напряжения: Uнш= 0,045 В.

Коэффициент шунта Кш определяем по формуле:

, (5.11)

Коэффициент обратной связи по напряжению Кон:

 (5.12)

Выходной координатой объекта управления является угловая скорость вращения ωо, а промежуточными: якорный ток, ЭДС двигателя, напряжение якорной обмотки, электромагнитный момент, магнитный ток.


3. Синтез CAУ

 

Для обеспечения требуемых статических и динамических параметров определим структуру системы.

Поскольку необходимо регулировать скорость и требуется динамика, то система должна иметь контур скорости и контур тока. Настройку контура обычно производят так, чтобы получить технически оптимальный переходный процесс, т.е. настройка на технический оптимум.

 

3.1 Расчет контура тока

Регулятор тока организован по ПИ-закону управления с настройкой на модульный оптимум. Регулятор для обеспечения требуемых динамических параметров должен компенсировать электромагнитную постоянную Тя, а также малую постоянную времени контура тока Т01 (рисунок9).

Описание: C:\Documents and Settings\Lanos\Local Settings\Temporary Internet Files\Content.Word\Oct08^75.jpg

Рис. 3- Структурная схема по току

Передаточная функция регулятора тока имеет вид:

 (6.1)

где Крm - пропорциональная часть регулятора тока;

 - постоянная времени регулятора тока.


(6.2)

 (6.3)

где - малая постоянная времени токового контура.

Тот = 2 ∙ Ттп = 2 ∙ 0,01 = 0,02 с, (6.4)

Согласно рисункам 4 и 5 запишем уравнения соответствия

динамических параметров системы и физических параметров схемы реализации:

Описание: C:\Documents and Settings\Lanos\Local Settings\Temporary Internet Files\Content.Word\Oct08^76.jpg

Рис. 4 -Структурная схема РТ Рис. 5- Принципиальная схема РТ

Зададимся емкостью конденсатора Cост= 1 мкФ = 0,000001 Ф, тогда согласно уравнению 2 системы 6.5, сопротивление Rост составит:


, (6.6)

Представив значение Сост = 1 мкФ в уравнение 3 системы 6.5, найдем сопротивление Rзт по формуле:

 (6.7)

Подставив значение Rзт в 1 - е уравнение системы 6.5, получим, что сопротивление Rт составит:

 (6.8)

По расчетам принимаем тип резисторов. Выбираем резисторы серии МЛТ.

Номинальная мощность: 0,125-2 Вт;

Диапазон сопротивления: 8,2 Ом – 10 МОм;

Рабочая температура: 125С0;

Допустимые отклонения: 5, 10, 20.

Датчик тока предназначен для преобразования тока якоря пропорциональное ему напряжение и включает в себя датчик и согласующее устройство. В качестве измерительного преобразователя в датчике использован шунт. В качестве элемента гальванической развязки принимаем микросхему оптоэлектронную полупроводниковую, состоящую из оптопар и транзисторных прерывателей типа К249, КН1Г. Выходное напряжение равно 3,5 В, входной ток равен 20 мА. На выходе датчика должно быть напряжение 10В.


Описание: C:\Documents and Settings\Lanos\Local Settings\Temporary Internet Files\Content.Word\Oct08^77.jpg

Рис. 6 - Принципиальная схема датчика тока


Информация о работе «Расчет тиристорного электропривода»
Раздел: Промышленность, производство
Количество знаков с пробелами: 15920
Количество таблиц: 0
Количество изображений: 12

Похожие работы

Скачать
44543
13
7

... имеют крутой передний фронт 2-5 мс, и малую длительность 10-15 градусов. Исходя из выше изложенных технических требований предъявляемых к системе управления, в проекте в качестве электропривода выбирается электропривод постоянного тока с тиристорным преобразователем, обеспечивающим регулирование напряжения на якоре двигателя. В соответствии с технологическими условиями производства система ...

Скачать
20450
7
4

... контура регулирования контур регулирования скорости двигателя. 4. Выбор комплектного тиристорного электропривода На основании выбранного электродвигателя произведем выбор промышленного комплектного тиристорного электропривода постоянного тока серии КТЭУ. Выбираем тиристорный электропривод КТЭУ 500/220-532-1ВМТД-УХЛ4. 800- Номинальный выходной ток 220- Номинальное выходное напряжение. 5- ...

Скачать
29013
7
13

... частоты на IGBT транзисторах, для частотно-регулируемого энергосберегающего электропривода с асинхронным приводом. Нагрузкой асинхронного двигателя служит центробежный насос для перекачки жидкости. Глава 1. Расчет управляемого выпрямителя для электродвигателя постоянного тока тиристорного электропривода 1.1 Выбор рациональной схемы управляемого выпрямителя и силовая часть электропривода   ...

Скачать
26330
1
20

ерсивного тиристорного электропривода постоянного тока с обратной связью по ЭДС и стабилизацией тока возбуждения двигателя. Данный электропривод постоянного тока разрабатывается на основе комплектного тиристорного электропривода ЭПУ. Применение тиристорного электропривода позволяет оптимизировать его работу на отработку необходимых технологических операций. В данной курсовой работе необходимо ...

0 комментариев


Наверх