2. Определяем коэффициент наполнения двигателя с наддувом на расчетной высоте
,
где - приведенный коэффициент наполнения.
Примем , тогда
.
3. Находим давление в конце такта наполнения.
,
где pr – давление остаточных газов в конце такта наполнения. Принимаем:
.
Степень подогрева свежей смеси в процессе наполнения условно характеризует результат суммарного теплообмена смеси со стенками цилиндра и донышком поршня, а также понижение температуры за счет испарения топлива.
При ,. Тогда:
.
После подстановки найденных и полученных величин получим
.
4. Определяем коэффициент остаточных газов
,
где - температура остаточных газов.
Примем , тогда:
.
5. Находим температуру газов в конце такта впуска
.
1.4 Расчет процесса сжатияЦель расчета процесса сжатия – определение давления и температуры газов в конце этого процесса.
1. Давление в конце такта сжатия:
2. Температура в конце такта сжатия:
1.5 Расчет процесса сгоранияЦель расчета процесса сгорания – определение максимальных значений давления и температуры газов при сгорании топлива.
1. Температура газов определим из уравнения сгорания, полученного на основании первого принципа термодинамики:
,
где - низшая теплота сгорания топлива с учетом условий, при которых протекает процесс сгорания.
;
- коэффициент эффективного выделения теплоты. Примем ;
– теоретически необходимое количество воздуха для сгорания топлива.
Действительное количество воздуха для сгорания 1кг топлива будет составлять:
.
- действительный коэффициент молекулярного изменения, где - химический коэффициент молекулярного изменения.
Для случая определяем
.
Тогда:
.
- средняя молярная теплоемкость газов в интервале температур от 0 до .
Тогда
.
Подставим все известные величины в исходное уравнение:
Решим данное уравнение с помощью программного пакета MathCAD 13.
Расчет температуры в пакете MathCAD 13
В результате получим: ,
2. Определим максимальное давление сгорания
1.6 Расчёт процесса расширенияЦель расчёта процесса расширения – определение давления и температуры в конце такта расширения.
1. Находим давление в конце такта расширения:
2.Находим температуру в конце такта расширения:
1.7 Определение индикаторных параметров двигателя1. Индикаторное давление
,
где - коэффициент полноты (скругления) индикаторной диаграммы. Примем .
- степень повышения давления.
Тогда:
2. Определяем индикаторный КПД.
3. Удельный индикаторный расход топлива равен
.
1.8 Определение эффективных параметров двигателя1. Среднее эффективное давление
,
где - коэффициент, оценивающий долю индикаторной мощности, затраченной на привод нагнетателя.
Эффективный КПД нагнетателя:
- теоретически необходимое количество воздуха для сгорания 1кг топлива, .
Тогда
.
Среднее давление механических потерь характеризует мощность, затраченную на преодоление сил трения, на привод вспомогательных механизмов и агрегатов и на “насосные” потери.
Для определения пользуются эмпирическими уравнениями, полученными на основании экспериментальных данных.
,
где
Среднее эффективное давление:
2. Механический КПД
3. Значение эффективного КПД
4. Удельный эффективный расход топлива
1.9 Определение геометрических параметров двигателя1. Рабочий объем цилиндра двигателя
2. Определяем диаметр цилиндра и ход поршня . Обозначим отношение . Тогда , откуда .
Значение m принимаем по прототипу .
.
3. Ход поршня .
4. Общий рабочий объем двигателя
5. Проверяем правильность расчетов основных размеров двигателя
.
Цель динамического расчета состоит в построении по данным теплового расчета индикаторной диаграммы и нахождении сил, действующих на все звенья кривошипно-шатунного механизма.
Выполнение динамического расчета авиационного поршневого двигателя связано с довольно большим объемом расчетной работы, поэтому целесообразно проводить его на ЭВМ. Особенность такого расчета – учет в нем главного динамического эффекта, создаваемого прицепными механизмами, - сил второго порядка. Динамический расчет звездообразного двигателя без учета этих сил неприемлем, поскольку при этом создается ложное впечатление об уравновешенности механизма и о запасах прочности коленчатого вала, редуктора и воздушного винта.
2.1 Допущения1. Учитываем только силы избыточного давления газов на поршень и силы инерции КШМ.
2. Индикаторные диаграммы во всех цилиндрах считаем одинаковыми. Теоретические диаграммы корректируем только в точке, соответствующей концу сгорания.
В конце сжатия и расширения диаграммы не корректируем. Считаем, что в течение насосных ходов газовые силы пренебрежимо малы по сравнению с силами инерции КШМ. Поэтому в тактах всасывания и выхлопа газовые силы считаем равными нулю.
3. Предполагаем геометрическое подобие деталей КШМ проектируемого двигателя и прототипа.
4. Для расчета сил инерции реальное распределение масс в КШМ приводим к расчетной схеме, в которой все массы считаем точечными, сосредоточенными на осях поршневых пальцев и оси шатунной шейки коленчатого вала.
5. Приведенные массы поступательно-движущихся частей в цилиндре с главным и прицепным шатунами считаем одинаковыми.
6. Отличия в кинематике и динамике прицепных механизмов от центрального не учитываем вплоть до заключительного этапа динамического расчета. На заключительном этапе динамического расчета учитываем главный динамический эффект, создаваемый прицепными механизмами.
... любом месте. Это обусловило широкое применение Двигателей внутреннего сгорания на транспортных средствах (автомобилях, строительно-дорожных машинах, самоходной военной технике и т. п.). Совершенствование Двигателей внутреннего сгорания идёт по пути повышения их мощности, надёжности и долговечности, уменьшения массы и габаритов, создания новых конструкций . Можно наметить также такие тенденции в ...
... издревле применялись при кораблестроении и мореплавании. Используемые человеком механизмы могут быть устроены очень сложно, однако для понимания их работы достаточно изучить так называемые простые механизмы - рычаг и наклонную плоскость. Коэффициент полезного действия Коэффициент полезного действия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или ...
... используется в паровых турбинах и т.д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства. Например, двигатели внутреннего сгорания наиболее широко используются на транспортных установках и сельскохозяйственных машинах. В стационарной энергетике двигатели внутреннего сгорания широко используются на небольших электростанциях, энергопоездах ...
... имитируемых эксплуатационных условиях и должны обеспечивать проведение всех видов и категорий контрольных и ресурсных испытаний, предусматриваемых общими техническими условиями (ОТУ) для серийного производства, а также после их ремонта. Испытательные стенды авиационных опытных ГТД, их систем и сборочных единиц (в составе ГТД) предназначены для проведения испытаний, исследований и доводки опытных ...
0 комментариев